NUMERICAL STUDY ON BROADBAND OPTICAL VORTEX BEAM IN THE VISIBLE RANGE USING NANOSTRUCTURED VORTEX PHASE COMPONENTS

Thi Hue Nguyen1, , Thanh Tùng Nguyễn1, Thùy Linh Nguyễn1, Minh Khải Cao1, Thị Hải Trần1, Văn Hiệu Lê1
1 Hong Duc University

Main Article Content

Abstract

In this study, we designed two compact flat-surface nanostructured gradient phase components to generate broadband optical vortex beams in the visible wavelength range. We numerically evaluated the optical performance of these components in air and liquid environments (ethanol). The results show that nanostructured vortex phase components with thicknesses of 7 μm and 8.5 μm can convert Gaussian beams into fundamental optical vortices within certain visible wavelength ranges. These optical vortex properties are preserved when the components are immersed in ethanol, suggesting potential applications in liquid environments such as microfluidics.

Article Details

References

[1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman (1992), Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Phys. Rev. A, 45(11), pp. 8185–8189.
[2] Yao, A. M. & Padgett, M. J. (2011), Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 3(2), pp. 161–204.
[3] Shen, Y. et al. (2019), Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities, Light Sci. Appl. 8(1), pp. 1–29.
[4] K. I. Willig, et al. (2006), STED microscopy reveals that synaptotagmin remains clustered afer synaptic vesicle exocytosis, Nature 13(440), pp. 935–939.
[5] M. Padgett and R. Bowman (2011), Tweezers with a twist, Nature Photonics 5(6), pp. 343–348.
[6] T. Omatsu, K. Miyamoto, K. Toyoda, R. Morita, Y. Arita, and K. Dholakia (2019), A New Twist for Materials Science: The Formation of Chiral Structures Using the Angular Momentum of Light, Advanced Optical Materials, 1801672, pp. 1–18.
[7] J. Wang (2016), Advances in communications using optical vortices, Photonics Res. 4(5), pp. B14-B28.
[8] P. Chen et al., “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater., vol. 30, no. 10, 2018, pp. 1–6.
[9] K. Sueda, G. Miyaji, et al., “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express, Vol. 12, 2004, p. 3548–3553.
[10] G. Campbell, B. Hage, et al.,“Generation of high-order optical vortices using directly machined spiral phase mirrors,” in Applied Optics, vol. 51, no. 7, 2012, pp. 873–876.
[11] N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett., vol. 17, no. 3, 1992, p. 221.
[12] D. Ganic et al., “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett., vol. 27, no. 15, 2002, p. 1351.
[13] N. Anaya Carvajal, C. H. Acevedo, et al., “Generation of Perfect Optical Vortices by Using a Transmission Liquid Crystal Spatial Light Modulator,” Int. J. Opt., vol. 2017, 2017.
[14] A. Zukauskas, M. Malinauskas, and E. Brasselet (2013), Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale, Appl. Phys. Lett. 103, pp. 181122.
[15] R. S. Rodrigues Ribeiro, P. Dahal, A. Guerreiro, P. Jorge, and J. Viegas, (2016), Optical fibers as beam shapers: from Gaussian beams to optical vortices, Opt. Lett., 41(10), pp. 2137.
[16] K. Weber, F. Hütt, S. Thiele, T. Gissibl, et al. (2017), Single mode fiber based delivery of OAM light by 3D direct laser writing, Opt. Express 25(17), pp. 19672–19679.
[17] K. Switkowski et al. (2017), Formation of optical vortices with all-glass nanostructured gradient index masks, Opt Express, 25(25), p. 31443.
[18] H. T. Nguyen, K. Switkowski, R. Kasztelanic, A. Anuszkiewicz, A. Filipkowski, R. Kasztelanic, D. Pysz, H. Van Le, R. Stepien, W. Krolikowski, and R. Buczynski (2020), Optical characterization of single nanostructured gradient index vortex phase masks fabricated by the modified stack-and-draw technique, Opt. Commun. 463, pp. 125435.
[19] Hue Thi Nguyen, Grzegorz Stepniewski, Adam Filipkowski, Rafal Kasztelanic, Dariusz Pysz, Hieu Le Van, Ryszard Stepien, Mariusz Klimczak, Wieslaw Krolikowski, and Ryszard Buczynski (2022), Transmission of an optical vortex beam in antiresonant fibers generated in an all-fiber system, Opt. Express 30, pp. 45635-45647.
[20] H.T. Nguyen, R. Kasztelanic, et al. (2023), Broadband optical vortex beam generation using flat-surface nanostructured gradient index vortex phase masks, Sci Rep 13, pp. 20255.
[21] R. Stepien, J. Cimek, D. Pysz, I. Kujawa, et al. (2014), Soft glasses for photonic crystal fibers and microstructured optical components, Opt. Eng. 0 53(7), pp. 071815.