INVESTIGATION AND FABRICATION OF ANTIBACTERIAL NANO POWDER AgZrP USING HYDROTHERMAL METHOD

Phuong Luong Thi Kim1,1, , Thắng Cao Xuân2, Giang Lê Thị1, Báu Lê Viết1, Huyền Trịnh Thị1, Thi Nguyễn Lê 1, Tùng Vũ Văn1
1 Hong Duc University
2 Đại học Bách Khoa Hà Nội

Main Article Content

Abstract

Antibacterial nano material Silver Zirconium phosphate (AgZrP) has been successfully synthesized by hydrothermal method. The results of the X-ray diffraction pattern show that the powder samples have begun to form the AgZrP crystal phase at a temperature of 180oC and belong to the cubic (hexagonal) space group. The morphological properties and chemical composition were comprehensively examined by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS). At the same time, the surface bond vibration mode of the sample was analyzed through Fourier transform infrared spectroscopy (FT-IR). In this study, the main technological parameters were determined to synthesize AgZrP antibacterial nano powder, including temperature, precursor concentration and annealing time. The resulting powder has an average size of about 50nm with very high antibacterial ability against E.coli bacterial > 99.99% after 8 hours of contact. The AgZrP nano powder product could become promise material for application as a green antibacterial material in the future.

Article Details

References

[1]. Mritunjai Singh, Shinjini Singh, S.Prasad, I.S.Gambhir, Digest Journal of Nanomaterials and Biostructures Vol 3, No 3, p.115-122
[2] Ahmad A., Senapati S., Khan M. I., Kumar R., and Sastry M. (2005), Journal of Biomedical Nanotechnology, Vol.1, Iss.1, pp. 47-53.
[3] Bhainsa K. C. and D'souza S. (2006), Colloids and surfaces B: Biointerfaces, Vol.47, Iss.2, pp. 160-164
[4] Kumar P., Singh P., Kumari K., Mozumdar S., and Chandra R. (2011), Materials Letters, Vol.65, Iss.4, pp. 59
[5] Singh. M,et al, Digest journal of Nanomaterials and Biostructures, carbohydrate Polymers,2008
[6] Taneja. B, Ayyub. B, Chandra. R, Physical Review B, Vol. 65, 2002, pp.245412.1-6.
[7] Tiwari. DK, Behary. J, Sen. P, Current Science, 95(5), 2008, pp.647-655
[8] Sirikamon Saengmee-anupharb, Toemsak Srikhirin, Boonyanit Thaweboon, Sroisiri Thaweboon,Taweechai Amornsakchai, Surachai Dechkunakorn, Theeralaksna Suddhasthira, Asian Pac J Trop Biomed 2013; 3(1): 47-52.
[9] P. Lalueza, M. Monzón, M. Arruebo and J. Santamaría, Mater. Res. Bull., 46, 2070 (2011).
[10] R. Kumar and H. Münstedt, Polym. Int., 54, 1180 (2005).
[11] C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. H. Sun, P. K. H. Tam, J. F. Chiu and C. M. Che, J. Biol. Inorg. Chem., 12, 527 (2007).
[12] J. R. Morones, J. L. Elechigueerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez and M. J. Yacaman, Nanotechnology, 16, 2346 (2005).
[13] I. Ahmed, D. Ready, M. Wilson and J. C. Knowles, J. Biomed. Mater. Res., 79(3), 618 (2006).
[14] J. Jain, S. Arora, J. M. Rajwade, P. Omray, S. Khandelwal and K. M. Paknikar, Mol. Pharm., 6(5), 1388 (2009).
[15] S. M. Lee, K. C. Song and B. S. Lee, Korean J. Chem. Eng., 27(2), 688 (2010).
[16] A. Ewald, D. Hösel, S. Patel, L. M. Grover, J. E. Barralet and U. Gbureck, Acta Biomater., 7, 4064 (2011).
[17] Jiu-Yang Yang, Chun-Ming Zheng, Yan-Qing Wang and Ming-Lin Guo, RSC Adv., 2014, 4, 42971–42976.
[18] Escherichia coli (ATCC25922)