ẢNH HƯỞNG CỦA CÁC MỨC THAY THẾ PROTEIN TRONG KHẨU PHẦN BẰNG BỘT ẤU TRÙNG RUỒI LÍNH ĐEN ĐẾN KHẢ NĂNG SINH TRƯỞNG CỦA GÀ RI LAI NUÔI TẠI KHU THỰC HÀNH TRƯỜNG ĐẠI HỌC HỒNG ĐỨC
Nội dung chính của bài viết
Tóm tắt
Nghiên cứu được thực hiện nhằm đánh giá ảnh hưởng của các mức thay thế protein trong khẩu phần bằng bột ấu trùng Ruồi lính đen đến khả năng sinh trưởng của Gà ri lai. Trong thí nghiệm này, 540 con Gà ri lai ¾ máu, 1 tháng tuổi, có khối lượng trung bình 382,61 g/con, được phân bố ngẫu nhiên vào 3 nghiệm thức với 3 lần lặp lại cho mỗi nghiệm thức. Bột ấu trùng ruồi lính đen được dùng để thay thế protein trong khẩu phần ăn với các mức 0% (đối chứng), 10% (NT1) và 15% (NT2). Kết quả cho thấy tỷ lệ sống đạt mức cao, dao động từ 95,00% - 96,66%. Đến tuần tuổi thứ 14, khối lượng cơ thể của gà nằm trong khoảng 1782,33 g - 1844,44 g/con, trong đó lô đối chứng có khối lượng thấp nhất và lô NT2 cao nhất. Trong giai đoạn 6 - 14 tuần tuổi, tiêu tốn thức ăn/kg tăng trọng dao động từ 2,27 - 2,91 kg, với hiệu quả chuyển hóa thức ăn ở NT2 cao hơn các lô còn lại, chênh lệch lên đến 0,64 kg thức ăn/kg tăng khối lượng. Từ kết quả nghiên cứu, mức thay thế 15% bột ấu trùng Ruồi lính đen cho khô đậu tương trong khẩu phần ăn giúp tối ưu hiệu quả kinh tế khi nuôi Gà ri lai.
Từ khóa
Gà ri lai, Ruồi lính đen, sinh trưởng.
Chi tiết bài viết
Tài liệu tham khảo
[2] Phạm Thị Phương Lan (2022), Nghiên cứu sử dụng ấu trùng ruồi lính đen (hermetia illucens) làm thức ăn cho cá chẽm (Latescalcarifer Bloch, 1790) tại Thừa Thiên Huế. Luận án tiến sĩ.
[3] Nguyễn Bá Mùi, Phạm Kim Đăng (2016). Khả năng sản xuất của gà ri và con lai (ri-sasso-lương phượng) nuôi tại An Dương, Hải Phòng, Tạp chí Khoa học Nông nghiệp Việt Nam, tập 14(3):392-399.
[4] Nguyễn Hoàng Thịnh, Bùi Hữu Đoàn và Nguyễn Thị Phương Giang (2020), Khả năng sinh trưởng và chất lượng thịt của gà ri Lạc Sơn, Tạp chí Khoa học Kỹ thuật Chăn nuôi, số 256.
[5] Tiêu chuẩn Việt Nam TCVN 2265:2007, Thức ăn chăn nuôi - Thức ăn hỗn hợp cho gà.
[6] Ahmed I., Qaisrani S.N., Azam F., Pasha T.N., Bibi F., Naveed S., Murtaza S. (2020). Interactive effects of threonine levels and protein source on growth performance and carcass traits, gut morphology, ileal digestibility of protein and amino acids, and immunity in broilers. Poult. Sci., 99: 280-289.
[7] Attivi K., Agboka K., Mlaga G., Oke O., Teteh A., Onagbesan O., Tona K. (2020). Effect of Black Soldier Fly (Hermetia Illucens) Maggots Meal as a Substitute for Fish Meal on Growth Performance, Biochemical Parameters and Digestibility of Broiler Chickens. Int. J. Poult. Sci., 19: 75-80.
[8] Čičková H., Newton G.L., Lacy R.C., Kozánek M. (2015). The use of fly larvae for organic waste treatment. J. Waste Manag., 35: 68-80.
[9] Dahiru S., Azhar B., Asmara B. (2016). Performance of spring chicken fed different inclusion levels of Black soldier fly larvae meal. Entomol. Ornithol. Herpetol., 5: 185-189.
[10] DeFoliart G.R. (2012). Insects as a global food resource: The history of talking about it, Available online at: https://insectsasfood.russell.wisc.edu/wpcontent/uploads/sites/ 246/2012/09/Manuscript.pdf (accessed on 20 June 2021), University of Wisconsin.
[11] Di Mattia C., Battista N., Sacchetti G., Serafini M. (2019). Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edibleinsects and invertebrates. Front. Nutr., 6: 106.
[12] Finke M.D. (2013). Complete nutrient content of four species of feeder insects. Zoo Biol., 32: 27-36.
[13] Foley J.A., Ramankutty N., Brauman K.A., Cassidy E.S., Gerber J.S., Johnston M.,Mueller N.D., O’Connell C., Ray D.K., West P.C. (2011). Solutions for acultivated planet. Nature, 478: 337-342.
[14] Havenstein G., Ferket P., Qureshi M. (2003). Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci., 82: 1500-1508.
[15] Kareem K.Y., Abdulla N.R., Foo H.L., Zamri A.N.M., Shazali N., Loh T.C.,Alshelmani M.I. (2018). Effect of feeding larvae meal in the diets on growth performance, nutrient digestibility and meat quality in broiler chicken. Ind. J. Anim. Res., 88: 1180-1185.
[16] Murawska D., Daszkiewicz T., Sobotka W., Gesek M., Witkowska D., Matusevičius P.,Bakuła T. (2021). Partial and Total Replacement of Soybean Meal with Full-Fat Black Soldier Fly (Hermetia illucens L.) Larvae Meal in Broiler Chicken Diets:Impact on Growth Performance, Carcass Quality and Meat Quality. Animals, 11: 2715.
[17] Moula N., Hornick J.L., Cabaraux J.F., Korsak N., Daube G., Dawans E., Antoine N.,Taminiau B., Detilleux J. (2018a). Effects of dietary black soldier fly larvae on performance of broilers mediated or not through changes in microbiota. J. Insects Food Feed, 4: 31-42.
[18] Neumann C., Velten S., Liebert F. (2018). The graded inclusion of algae (Spirulina platensis) or insect (Hermetia illucens) meal as a soybean meal substitute in meat type chicken diets impacts on growth, nutrient deposition and dietary protein quality depending on the extent of amino acid supplementation. Open J.Anim. Sci., 8: 163-183.
[19] Oonincx D.G., De Boer I.J. (2012). Environmental impact of the production of mealworms as a protein source for humans–a life cycle assessment. PloS One, 7.
[20] Onsongo V., Osuga I.M., Gachuiri C., Wachira A., Miano D., Tanga C., Ekesi S.,Nakimbugwe D., Fiaboe K. (2018). Insects for income generation through animal feed: Effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. J. Econ. Entomol., 111: 1966-1973.
[21] Roser M., Ritchie H., Ortiz-Ospina E. (2019). World population growth. Published online at OurWorldInData. org. https://ourworldindata.org/world-populationgrowth. (Accessed: March 15, 2020.).
[22] Rumpold B.A., Schlüter O.K. (2013). Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res., 57: 802-823.
[23] Schiavone A., Cullere M., De Marco M., Meneguz M., Biasato I., Bergagna S.,Dezzutto D., Gai F., Dabbou S., Gasco L. (2017a). Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci., 16: 93-100.
[24] Thirumalaisamy G., Muralidharan J., Senthilkumar S., Hema Sayee R., Priyadharsini. (2016). Cost-effective feeding of poultry. Int. J. Sci. Environ. Technol., 5:3997-4005.
[25] Van Huis A., Van Itterbeeck J., Klunder H., Mertens E., Halloran A., Muir G., Vantomme P. (2013) Edible insects: future prospects for food and feed security, Food and Agriculture Organization of the United Nations.
[26] Velten S., Neumann C., Bleyer M., Gruber-Dujardin E., Hanuszewska M., PrzybylskaGornowicz B., Liebert F. (2018). Effects of 50 percent substitution of soybean meal by alternative proteins from Hermetia illucens or Spirulina platensis in meat-type chicken diets with graded amino acid supply. Open J. Anim. Sci., 8:119.
[27] Wahid A., Purwanti S., Auza F. (2021) Published. Substitution of fishmeal with black soldier fly larvae (Hermetia illucens L) against the performance of native chickens grower phase IOP Conference Series: Earth and Environmental Science, 2021. IOP Publishing, 012182.