TỔNG HỢP VÀ XÁC ĐỊNH CẤU TRÚC MỘT SỐ HỢP CHẤT CHỨA DỊ VÒNG QUINOLINE NHIỀU NHÓM THẾ TỪ EUGENOL TRONG TINH DẦU HƯƠNG NHU
Main Article Content
Abstract
Hai ester 5, 6 được tổng hợp từ hợp chất 4 với hiệu suất cao. Một hydroxamic acid 7 được tổng hợp từ ester 5 trong điều kiện được tối ưu hoá: dung môi ethanol/DMF (4:1) ở 25°C, hiệu suất đạt 80%. Cấu trúc của các hợp chất mới 5, 6 và 7 được xác định thông qua phân tích phổ hồng ngoại, cộng hưởng từ hạt nhân và khối lượng. Hợp chất 7 không thể hiện hoạt tính kháng hai dòng ung thư gan và ung thư phổi ở nồng độ IC50 ≤ 128 (mg/ ml).
Keywords
Quinoline, hydroxamic acid, eugenol, tinh dầu hương nhu.
Article Details
References
[1] Luo, Z. G., Cheng, C. Z., Fang, W., Hong, Q. H., Cun, X. W., Hong, G. D., et al. (2009), Synthesis and Biological Activities of Quinoline Derivatives as HIV-1 Integrase Inhibitors, Chem. Res. Chin. Universities, 25 (6), 841-845.
[2] Bawa, S., Kumar, S., Drabu, S., and Kumar, R. (2010), Structural Modifications of Quinoline-Based Antimalarial Agents: Recent Developments. J. Pharm, Bioall Sci, 2 (2), 64.
[3] Meshram, H. M., Chennakesava Reddy, B., Aravind Kumar, D., Kalyan, M., Ramesh, P., Kavitha, P., et al. (2012), Synthesis and Cytotoxicity of New Quinoline Derivatives, Indian J. Chem. - Section B Org. Med. Chem, 51 (9), 1411-1416.
[4] Sidoryk, K., Switalska, M., Jaromin, A., Cmoch, P., Bujak, I., Kaczmarska, M., et al. (2015), The Synthesis of Indolo[2,3-b]Quinoline Derivatives with a Guanidine Group: Highly Selective Cytotoxic Agents, Eur. J. Med. Chem, 105, 208-219.
[5] Wang, H. X., Liu, H. Y., Li, W., Zhang, S., Wu, Z., Li, X., et al. (2019), Design, Synthesis, Antiproliferative and Antibacterial Evaluation of Quinazolinone Derivatives, Med. Chem. Res, 28 (2), 203-214.
[6] Asif, M. et.al (2014), Chemical Characteristics, Synthetic Methods, and Biological Potential of Quinazoline and Quinazolinone Derivatives, Int. J. Med. Chem, 2014, 1-27.
[7] Byeoung-Soo Park et al. (2002), Synthesis and evaluation of new antimalarial analogues of quinoline alkaloids derived from Cinchona ledgeriana moens extrimen, Bioorganic & Medicinal Chemistry Letters, 12(10), 1351-1355.
[8] Andreas H. Diacon et al (2009), The diarylquinoline TMC207 for multidrug-resistant Tuberculosis, N. Engl. J. Med., 360(23), 2397-2405.
[9] Chen, J. B., Chern, T. R., Wei, T. T., Chen, C. C., Lin, J. H., Fang, J. M (2013), Design and synthesis of dual-action inhibitors targeting histone deacetylases and -3 hydroxy-3-methylglutaryl coenzyme A reductase for cancer treatment, J. Med. Chem, 56, 3645-3655.
[10] Cai, X., Zhai, H. X, Wang, J., Forrester, J., Qu, H., Yin, L., Lai, C. J., Bao, R. Q (2010), Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)N hydroxyheptanamide (CUDc-101) as a potent multi-acting HD AC, EGFR, and HER2 inhibitor for the treatment of cancer, J. Med. Chem, 53, 2000-2009.
[11] Marson, C, M., Savy, P., Rioja, A. S., Mahadevan, T., Mikol, C., Veerupillai, A., Nsubuga, E., Chah, W. A., Joel, S. P (2006), Aromatic sulfide inhibitors of histone deacetylase based on arylsulfinyl-2,4-hexadienoic acid hydroxyamides, J. Med. Chem, 49, 800-5.
[12] Dinh, N.H., Co , L. V, Tuan, N. M., Hai, L.T.H., Meervelt , L. Van (2012), New route to novel polysubstituted quinolines starting with eugenol, the main constituent of Ocimum sanctum L. oil, J. Heter. Chem, 85, 627-637.
[2] Bawa, S., Kumar, S., Drabu, S., and Kumar, R. (2010), Structural Modifications of Quinoline-Based Antimalarial Agents: Recent Developments. J. Pharm, Bioall Sci, 2 (2), 64.
[3] Meshram, H. M., Chennakesava Reddy, B., Aravind Kumar, D., Kalyan, M., Ramesh, P., Kavitha, P., et al. (2012), Synthesis and Cytotoxicity of New Quinoline Derivatives, Indian J. Chem. - Section B Org. Med. Chem, 51 (9), 1411-1416.
[4] Sidoryk, K., Switalska, M., Jaromin, A., Cmoch, P., Bujak, I., Kaczmarska, M., et al. (2015), The Synthesis of Indolo[2,3-b]Quinoline Derivatives with a Guanidine Group: Highly Selective Cytotoxic Agents, Eur. J. Med. Chem, 105, 208-219.
[5] Wang, H. X., Liu, H. Y., Li, W., Zhang, S., Wu, Z., Li, X., et al. (2019), Design, Synthesis, Antiproliferative and Antibacterial Evaluation of Quinazolinone Derivatives, Med. Chem. Res, 28 (2), 203-214.
[6] Asif, M. et.al (2014), Chemical Characteristics, Synthetic Methods, and Biological Potential of Quinazoline and Quinazolinone Derivatives, Int. J. Med. Chem, 2014, 1-27.
[7] Byeoung-Soo Park et al. (2002), Synthesis and evaluation of new antimalarial analogues of quinoline alkaloids derived from Cinchona ledgeriana moens extrimen, Bioorganic & Medicinal Chemistry Letters, 12(10), 1351-1355.
[8] Andreas H. Diacon et al (2009), The diarylquinoline TMC207 for multidrug-resistant Tuberculosis, N. Engl. J. Med., 360(23), 2397-2405.
[9] Chen, J. B., Chern, T. R., Wei, T. T., Chen, C. C., Lin, J. H., Fang, J. M (2013), Design and synthesis of dual-action inhibitors targeting histone deacetylases and -3 hydroxy-3-methylglutaryl coenzyme A reductase for cancer treatment, J. Med. Chem, 56, 3645-3655.
[10] Cai, X., Zhai, H. X, Wang, J., Forrester, J., Qu, H., Yin, L., Lai, C. J., Bao, R. Q (2010), Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)N hydroxyheptanamide (CUDc-101) as a potent multi-acting HD AC, EGFR, and HER2 inhibitor for the treatment of cancer, J. Med. Chem, 53, 2000-2009.
[11] Marson, C, M., Savy, P., Rioja, A. S., Mahadevan, T., Mikol, C., Veerupillai, A., Nsubuga, E., Chah, W. A., Joel, S. P (2006), Aromatic sulfide inhibitors of histone deacetylase based on arylsulfinyl-2,4-hexadienoic acid hydroxyamides, J. Med. Chem, 49, 800-5.
[12] Dinh, N.H., Co , L. V, Tuan, N. M., Hai, L.T.H., Meervelt , L. Van (2012), New route to novel polysubstituted quinolines starting with eugenol, the main constituent of Ocimum sanctum L. oil, J. Heter. Chem, 85, 627-637.