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Abstract: We prove a local version of a result obtained recently by Luong anh Hoc on the
existence of zeros of functionals on partial metric spaces and apply it to the study of the
preservation of zeros of a family of functionals. As a corollary, we derive a preservation
result for fixed points of a family of multi-valued mappings in partial metric spaces.
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1. Introduction and preliminaries

In [12], Matthews introduced the concept of a partial metric space, motivated by its
potential to model the mathematical semantics of programming languages. A
fundamental difference from standard metric spaces is that the distance between a point
and itself is not required to be zero. These spaces have been successfully applied in
various areas of computer science, including domain theory, programming languages,
and semantics ([7,9,11,13,15]). Matthews also established a partial metric analog of the
Banach contraction mapping theorem. Following this foundational work, there has been
extensive research into the topological properties and fixed-point theory within partial
metric spaces ([1-6,8,10,14,16,17]).

We now recall some definitions and basic results in partial metric spaces.

Definition 1.1. [12] Let X be a nonempty subset. A function p: X X X — R, is said
to be a partial metric on X if for any x, y, z € X, the following condition hold:

(p1) p(x,x) = p(y,¥) = p(x,y) ifand only if x = y;

(p2) p(x, x) < p(x,¥);

(p3) p(x,¥) = (¥, x);

(P4) p(x,y) < p(x,2) + p(z,¥) — (2, 2).

The pair (X, p) is said to be a partial metric space.

It follows from (p1) and (p2) that if p(x,y) = 0, then x = y. However, the converse
is not true. The condition (p2) means that x minimizes the distance from itself and this
distance might be positive. One well-known example of a partial metric space is the pair
(X,d) with X c R, and p: X X X - R, defined by p(x,y) = max{x, y} forall x,y € X.
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Let (X,p) be a partial metric space. The open p-ball centered at x € X with radius
r > 0 is defined by B,(x,7) = {y € X:p(x,y) < p(x,x) + r}. It is well known that the
partial metric p generates a T, topology 7,, on X with a base being the collection of the
open p-balls {B,(x,7):x € X,r > 0}. Let A be a subset of X. The subset A is said to be
open (respectively, closed) if it is open (respectively, closed) with respect to the topology
T,. Theset A is said to be bounded if there exist x, € X and r > 0 such that A < B(x,,7).
We denote by P(X) the set of all nonempty subsets of X, by C(X) the set of all nonempty
closed subsets of X and by CB(X) the set of all nonempty closed bounded subsets of X.

Definition 1.2. Let (X,p) be a partial metric space and {x,} be a sequence in X.

Then,

(i) {x,} is said to converge to x € X, with respect to 7, denoted by x, 5 x, if
p(x,x) = lim p(x, x,).
n—oo
(i1) {x,,} is called a Cauchy sequence if lim p(x,,x,,) exists and is finite. We say
m,n—oo

that (X, p) is complete if every Cauchy sequence {x,} in X converges, with respect to 7,,,
to a point x € X such that p(x,x) = lim p(x,, x,,).
m,n—oo

(i) {x,} is said to be 0-Cauchy if lim p(x,,x,,) = 0. We say that (X, p) is 0-
m,n—oo

complete if every 0-Cauchy sequence in X converges, with respect to 7,,, to a point x € X
such that p(x,x) = 0.

Note that if (X,p) is complete, then it is 0-complete. However, as shown in the
following example, the converse is not true.

Example 1.1. ([14]). The partial metric space (Q N R*,p) with Q being the set of
all rational numbers and p(x,y) = max{x,y} for all x,y € Q nR*, is a 0-complete
partial metric space but not complete.

Lemma 1.1. ([2]) Let (X, p) be a partial metric space and {x,,} in X be convergent
to x € X with p(x,x) = 0. Then, for every y € X, 7{%0 p(x,,y) = p(x,y).

Let A, B be subsets of X. The distance from an element x € X to the set A is
defined by p(x,A) = inf{p(x,a):a € A}. The excess of A over B is defined by
e(A,B) = sup{d(a,B): a € A}. The generalized Hausdorff distance between A and B is
defined by H(A, B) = max{e(4,B),e(B,A)}.

Lemma 1.2. ([1]) Let (X, p) be a partial metric space and A any nonempty set in
X.Thena € A © p(a,A) = p(a,a), where A denotes the closure of A with respect to the
partial metric p. Notice that A4 is closed in (X, p) ifand only if A = A.

Lemma 1.3. ([4]) Let (X,p) be a partial metric space, A,B € CB(X) and h > 1.
Then, for any a € A, there exists b € B such that p(a,b) < h H(A, B).

The following theorem is a special case of a result proven in [10].

Theorem 1.1. [10] Let (X,p) be a 0-complete partial metric space and f: X —
R, be a function. Assume that there exists k € (0,1),L > 0 and £ > 0 such that for any
x € X, there is some y € X satisfying the following inequalities: f (y) < kf (x)
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And p(x,y) — min{p(x, %), p(y,y)} < L[f(x)]".

If £ is lower semi-continuous, then there exists z € X such that f(x) = 0.

Our aim of this paper is to give a local version of Theorem 1.1 and apply it to prove
a preservation result on the existence of zeros of a family of functionals on partial metric
spaces. Consequently, a preservation result for fixed point of a family of multi-valued
mappings in partial metric spaces is derived.

2. Main results

Our first result is a local version of Theorem 1.1.
Theorem 2.1. Let (X,p) be 0-complete partial metric space, x, € X, r > 0 and
f:X - R, be a lower semi-continuous function on X. Assume that there exists k €
(0,1),L > 0 and ¢ > 0 such that for any x € B(x,, 1), there is some y € X satisfying the
following inequalities:
fQ) < kf(x) (1)
And
p(x,y) — min{p(x,x),p(y,y)} <L[f(x)]* ()
If [f(xx)l? < (1 = k®r/L, then there exists x* € B(x,,r) such that f(x*) = 0,
p(x*,x*) = 0and
£
p(xe,x*) < % ©
Proof. We will construct, by induction, a sequence {x,} in X starting from x,, such
that for all n > 0:

Xn+1 € B(xo,7) 4)
fOnen) < kf(xn) (5)
P (n, Xp1) — Min{p(xn, X,), DKy, X 1)} < LUF (o)1 (6)
Indeed, since x, € B(x,,7), by the assumptions, there exists x; € X such that
f(xy) <k fxo)

and
p(xo,%1) — min{p(xo, Xo), p(x1, %)} < LIf (x0)]".
It follows from the latter inequality that
p(x,%1) —p(xo,%0) < p(x,x1) — min{p(xg, xo), p(x1,%1)}
<L[flx ) <1 —-kDr<r.

Thus, x; € B(x,,r). Therefore, (4) — (6) hold for n = 0.

Suppose for some positive integer m we have generated x,, x4, ..., X,,,_; Satisfying
(4) — (6) forn=0,1,...,m— 1. Since x,, € B(x,,7), by the assumptions, there exists
Xm+1 € X such that f(x,,41) < kf(x,,) and

P Qs Xm1) — MNP (X, Xn), D g1, Xrms )} < LIF G
Thus, (5) and (6) hold for n = m. Moreover, since (5) holds forn = 0,1, ..., m, one has

Fx) S kf(xiny) S k*f(xi_p) < - < k' f(x)
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forall i =0,1,..., m. We have

p(xg, Xmy1) — (X0, Xo) < Z p(xi, Xi41) — Z p(x;, x;)
< Z[p(xl,xlﬂ) min{p (v, %), P (Xesr, X))

< ) LG < ZL[kif(xo)]"
i=0 i=0

UL ¢
= LGy ety < L
i=0

This means that x,,,,,; € B(x,,) and (4) holds for n = m + 1. Thus, by induction,
the construction of the sequence {x,,} satisfying (4) - (6) is complete.
By (5), we have for all n that

fOen) < kf(xpq) < - < k™ f(x0)
Since k € (0,1) and f(x) = 0 for all x € X, by (7) we have
lim f(x,) = 0.
n—oo
Using (7) and (6), we have forall m > n > 0 that

(8)
p(xn'xm) = z p(xuxl+1) Z p(xux )

i=n+1

(7)

m-—

p—l

[p(x;, xi01) — min{p(x;, %), P (X1, X413
i=n
m—

Juy

LGl < ) LK)

m-—1 [e9)

= LGOI ) (K< LIl ), (k'
iCH]

11—kt
Since (k)" > 0asn — oo

i=n
——— (k)™
, lim p(x,,x,,) = 0. This implies that {x,} is a 0-
n,m—-co

p
Cauchy sequence. Since X is 0-complete, there exists x* € X such that x,, — x* and
p(x*; x*) = lim p(xn:x*) = lim p(xn:xm) = 0.
n—-oo n—-oo
Since f is lower semicontinuous, we have f(x*) < liminff(x,) =0 which
n—-oo
implies f(x*) = 0.
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LIf (xp)1?
1-k?

In (8), letting n = 0, we get p(xg, X,) < for all m = 1. Then, by Lemma

1.1, one has

L[f (xo)I*

plxg,x") = lim pCro,xm) < —— 7

This proves (3). Moreover, the latter inequality implies that p(xy,x*) <7 i.e.,
x* € B(x,,7r). This ends the proof. m

We next present a result on the preservation of the existence of zeros for a family
of one-parameter functionals on partial metric spaces.

Theorem 2.2. Let (X, d) be 0-complete partial metric space, 2 be an open subset
of X and {f;};e(o,1) be a family of lower semi-continuous functionals f;: 2 - R,. Assume
that the following conditions hold.

(i) the set Q = {(x,t) € Q x [0,1]: fy(x) = 0} is closed in the partial metric space
(X x [0,1], p) where p((x, t),(v,s) =p(x,y) + |t —s| forall x,y € X and ¢, s € [0,1];

(it) there exist k € (0,1), L > 0 and ¢ > 0 such that for each t € [0,1] and for
each x € 02, there is y € X such that

fi ) < kf (%)
and
p(x,y) —min{p(x,x),p(y,»)} < LI[f,(x)]".
(iii) there exists a continuous increasing function 6:[0,1] — R such that
Ife, () — fi,()] < 16(t,) — 6(t,)| forall t;,t, € [0,1] and each x € 1.
Then, f; has a zero in £ provided that then f, has a zero in 0.
Proof. Since f, has a zero in £, Q is a nonempty set. We define the partial order

relation < on Q as follows:
2L

1—-k*

[6(s) — 6()].

xt)<s) < t<s and p(xy)<

Let D be a totally ordered subset of Q and set
t* = supf{t € [0,1]: (x,t) € D}.
Then, there exists a sequence {(x,,t,)} in D such that (x,, t,) < (X+1,tn4+1) and
t, > t"asn — oo, Thus, forallm >n, t, <t,, and

p(xn' xm) < 1=kt [e(tm) - H(tn)]

Since 6 is continuous and t,, — t* as n — oo, it follows from (9) that p(x,, x,,) =

0 as m,n - c. Thus, {x,} is a 0-Cauchy in X. By the 0-completeness of X, {x,}

converges to some x* € X. Since Q is closed, {(x,,t,)} € Q and (x,,t,) — (x*,t*) as

n — oo, we have f;-(x*) = 0. We claim that (x*,t*) is an upper bound of D. Indeed,
letting m — oo in (9), one gets

2
PO ) < T 1602 — 6(t,)]

©)
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for all n. This together with the fact t, < t* for all n implies that (x,,t,) <
(x*,t™) for all n. Let (x,t) be an any element of D. Then, by the convergence of {¢t,} to
t*, there exists N € N such that t* — ¢, < t* —t. Hence, t < ty. This implies that (x,t)
< (xy, ty). By the transitivity, we have (x,t) < (x*,t*). Therefore, (x*,t*) is an upper
bound of D. By the Zorn lemma, Q has a maximal element. Let (x,t) be a maximal
element of Q. We claim that t = 1. Assume to the contrary that ¢ < 1. By the continuity
of 8, we can choose t € (t, 1) and

2L ,
r= 1_—k€[9(t) —0(0)]
such that B(x,r) c Q. By (iii), we have
1-kDr A-k5r

L) =1, ~ I <16 ~ 6@ =~ <~

By Theorem 2.1, there exists x € B(x,r) such that f.(x) = 0. Thus, (x,t) € Q.
This contradicts the maximality of (x,t) in Q. Hence, t =1 and (x,1) € Q. That is, f;
has a zero in Q. This ends the proof. =

We finally apply Theorem 2.2 to derive a preservation result for fixed points of a
family of multi-valued mappings in partial metric spaces. For some results of this type,
we refer the reader to, e.g., [17] and references therein.

Theorem 2.3. Let (X,p) be a 0-complete partial metric space and 2 c X be an
open set. Assume that {F;};c(o 1 is @ family of multi-valued mappings F;: N - CB(X)
satisfying the following conditions:

(@) x & F.(x) forall x e 2\ and t € [0,1];
(b) there exist k € (0,1),L > 0 and £ > 0 such that for any x € 2 there is some y € X
satisfying

p(v,F,(»)) < kp(x, F,(x))
and

p(x,y) = min{p(x,x), p(y, 1)} < L[d(x, F.(0))]

for each t € [0,1];

(c) there exists an increasing continuous function n: [0,1] — R such that

Hp(Ft(x),FS(x)) < In() —n(s)l, forallt,s € [0,1]and for each x € (2;

(d) for each t € [0,1], the function x = p(x, F,(x)) is lower semi-continuous.

Then, F; has a fixed point in 2 provided that F,, has a fixed point in £2.

Proof. Foreacht € [0,1], let f;: @ —» R, be defined by f,(x) = p(x, F,(x)) for all
x € 2. Then, by (d), f; is lower semi-continuous for each ¢ € [0,1]. By (b), f; satisfies
condition (ii) of Theorem 2.2. We next show that {f;} satisfies condition (iii) of Theorem
2.2 with 8 = hn. Indeed, let t,,t, € [0,1] and x € Q. Let y, be an arbitrary element in
F,(x). By Lemma 13, there exists y; €F (x) such that p(y;,y,) <
hH(F (x), Fe,(x)). Then, by (c), we have
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fo, () = p (2, F, (1) < p(t, 1) < p(6,y2) + (1, ¥2) = p(2,2)
<p(xy,)+ hH(Ftl(x);th (x))
<p(x,y2) + [hn(ty) — hn(t)|.

Since y, € F¢,(x) is arbitrary, it follows from the latter inequality that

fe, () < fi, () + [hn(ty) — hn(E)|.

Changing the roles of t, and t,, one also gets

fe,() < fi, () + [hn(t,) — hn(¢,)].
Thus,
|fe, () = £, 0| < 1hn(t) — hn(e,)|.

We now show that the set Q = {(x,t) € Q x [0,1]: f,(x) = 0} is closed. Let
{(x,,t,)} © Q be such that (x,,t,) » (x*,t*) € QA x [0,1] as n - . Then, x, - x*
and t, = t* asn — oo. Since {f;} satisfies condition (iii) of Theorem 2.2 with 6 = hn,
one has 0 < ft*(xn) = |ﬁn (xn) - ft* (xn)l < hln(tn) - U(t*)|

It follows from the continuity of n that lim f;-(x,) = 0. Then, by the lower semi-

n—->0oo
continuity of f;+, 0 < f;+(x*) < liminf f;+(x,) = 0.

This implies that f,«(x*) = 0. By (a), (x*, t*) must belong to Q. Thus, Q is closed.
Since F; has closed values for all t € [0,1], x is a fixed point of F, if and only if x is a
zero of f;. Applying Theorem 2.2, we get the desired conclusion.m

3. Conclusion

We have proved a local version for a result on the existence of zeros of a functional
defined on a partial metric space presented in [10]. Based on this result, we have
established a preservation result on the existence of zeros of a family of parametric
functionals on partial metric spaces. Consequently, we have derived a preservation result
for the existence of fixed points of a family of multi-valued mappings in partial metric
spaces. It would be interesting to extend the results of this paper to multi-valued functionals
and apply obtained results to fixed point theory. We leave this topic for future works.
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