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Abstract: We prove a local version of a result obtained recently by Luong anh Hoc on the 

existence of zeros of functionals on partial metric spaces and apply it to the study of the 

preservation of zeros of a family of functionals. As a corollary, we derive a preservation 

result for fixed points of a family of multi-valued mappings in partial metric spaces. 
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1. Introduction and preliminaries   

 In [12], Matthews introduced the concept of a partial metric space, motivated by its 

potential to model the mathematical semantics of programming languages. A 

fundamental difference from standard metric spaces is that the distance between a point 

and itself is not required to be zero. These spaces have been successfully applied in 

various areas of computer science, including domain theory, programming languages, 

and semantics ([7,9,11,13,15]). Matthews also established a partial metric analog of the 

Banach contraction mapping theorem. Following this foundational work, there has been 

extensive research into the topological properties and fixed-point theory within partial 

metric spaces ([1-6,8,10,14,16,17]). 

 We now recall some definitions and basic results in partial metric spaces. 

Definition 1.1. [12] Let 𝑋 be a nonempty subset. A function 𝑝: 𝑋 × 𝑋 → ℝ+ is said 

to be a partial metric on  𝑋 if for any 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following condition hold: 

(p1) 𝑝(𝑥, 𝑥) = 𝑝(𝑦, 𝑦) = 𝑝(𝑥, 𝑦) if and only if 𝑥 = 𝑦; 

(p2) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦); 

(p3) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥); 

(p4) 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦) − 𝑝(𝑧, 𝑧). 

The pair (𝑋, 𝑝) is said to be a partial metric space. 

It follows from (p1) and (p2) that if  𝑝(𝑥, 𝑦) = 0, then 𝑥 = 𝑦. However, the converse 

is not true.  The condition (p2) means that 𝑥 minimizes the distance from itself and this 

distance might be positive. One well-known example of a partial metric space is the pair 

(𝑋, 𝑑) with 𝑋 ⊂ ℝ+ and 𝑝: 𝑋 × 𝑋 → ℝ+ defined by 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ 𝑋. 
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Let (𝑋, 𝑝) be a partial metric space. The open 𝑝-ball centered at 𝑥 ∈ 𝑋 with radius 

𝑟 > 0 is defined by 𝐵𝑝(𝑥, 𝑟) = {𝑦 ∈ 𝑋: 𝑝(𝑥, 𝑦) < 𝑝(𝑥, 𝑥) + 𝑟}. It is well known that the 

partial metric 𝑝 generates a 𝑇0 topology 𝜏𝑝 on 𝑋 with a base being the collection of the 

open 𝑝-balls {𝐵𝑝(𝑥, 𝑟): 𝑥 ∈ 𝑋, 𝑟 > 0}.  Let 𝐴 be a subset of 𝑋. The subset 𝐴 is said to be 

open (respectively, closed) if it is open (respectively, closed) with respect to the topology 

𝜏𝑝.  The set 𝐴 is said to be bounded if there exist 𝑥0 ∈ 𝑋 and 𝑟 > 0 such that 𝐴 ⊂ 𝐵(𝑥0, 𝑟). 

We denote by 𝑃(𝑋) the set of all nonempty subsets of 𝑋, by 𝐶(𝑋) the set of all nonempty 

closed subsets of 𝑋 and by 𝐶𝐵(𝑋) the set of all nonempty closed bounded subsets of 𝑋. 

Definition 1.2.  Let (𝑋, 𝑝) be a partial metric space and {𝑥𝑛} be a sequence in 𝑋.  

Then,  

(i) {𝑥𝑛} is said to converge to 𝑥 ∈ 𝑋, with respect to 𝜏𝑝, denoted by 𝑥𝑛 →
𝑝

𝑥, if 

𝑝(𝑥, 𝑥) = lim
𝑛→∞

𝑝(𝑥, 𝑥𝑛). 

(ii) {𝑥𝑛} is called a Cauchy sequence if lim
𝑚,𝑛→∞

𝑝(𝑥𝑛, 𝑥𝑚) exists and is finite. We say 

that (𝑋, 𝑝) is complete if every Cauchy sequence {𝑥𝑛} in 𝑋 converges, with respect to 𝜏𝑝, 

to a point 𝑥 ∈ 𝑋 such that 𝑝(𝑥, 𝑥) = lim
𝑚,𝑛→∞

𝑝(𝑥𝑛, 𝑥𝑚). 

(iii)  {𝑥𝑛} is said to be 0-Cauchy if lim
𝑚,𝑛→∞

𝑝(𝑥𝑛, 𝑥𝑚) = 0. We say that (𝑋, 𝑝) is 0-

complete if every 0-Cauchy sequence in X converges, with respect to 𝜏𝑝, to a point 𝑥 ∈ 𝑋 

such that 𝑝(𝑥, 𝑥) = 0. 

Note that if (𝑋, 𝑝) is complete, then it is 0-complete. However, as shown in the 

following example, the converse is not true.  

Example 1.1. ([14]). The partial metric space (ℚ ∩ ℝ+, 𝑝) with ℚ being the set of 

all rational numbers and 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ ℚ ∩ ℝ+, is a 0-complete 

partial metric space but not complete. 

Lemma 1.1. ([2]) Let (𝑋, 𝑝) be a partial metric space and {𝑥𝑛} in 𝑋 be convergent 

to 𝑥 ∈ 𝑋 with 𝑝(𝑥, 𝑥) = 0. Then, for every 𝑦 ∈ 𝑋, 𝑙𝑖𝑚
𝑛→∞

𝑝(𝑥𝑛, 𝑦) = 𝑝(𝑥, 𝑦). 

 Let 𝐴, 𝐵 be subsets of 𝑋. The distance from an element 𝑥 ∈ 𝑋 to the set  𝐴 is 

defined by 𝑝(𝑥, 𝐴) = inf{𝑝(𝑥, 𝑎): 𝑎 ∈ 𝐴}. The excess of 𝐴 over 𝐵 is defined by 

𝑒(𝐴, 𝐵) = sup{𝑑(𝑎, 𝐵): 𝑎 ∈ 𝐴}. The generalized Hausdorff distance between 𝐴 and 𝐵 is 

defined by 𝐻(𝐴, 𝐵) = max{𝑒(𝐴, 𝐵), 𝑒(𝐵, 𝐴)}. 

Lemma 1.2. ([1]) Let (𝑋, 𝑝) be a partial metric space and 𝐴 any nonempty set in 

𝑋. Then 𝑎 ∈ 𝐴‾ ⇔ 𝑝(𝑎, 𝐴) = 𝑝(𝑎, 𝑎), where 𝐴‾ denotes the closure of 𝐴 with respect to the 

partial metric 𝑝. Notice that 𝐴 is closed in (𝑋, 𝑝) if and only if 𝐴 = 𝐴‾. 

Lemma 1.3. ([4]) Let (𝑋, 𝑝) be a partial metric space, 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋) and ℎ > 1. 

Then, for any 𝑎 ∈ 𝐴, there exists 𝑏 ∈ 𝐵 such that 𝑝(𝑎, 𝑏) ≤ ℎ 𝐻(𝐴, 𝐵). 

  The following theorem is a special case of a result proven in [10]. 

Theorem 1.1. [10] Let (𝑋, 𝑝) be a 0-complete partial metric space and 𝑓: 𝑋 →

ℝ+be a function. Assume that there exists 𝑘 ∈ (0,1), 𝐿 > 0 and ℓ > 0 such that for any 

𝑥 ∈ 𝑋, there is some 𝑦 ∈ 𝑋 satisfying the following inequalities:𝑓(𝑦) ≤ 𝑘𝑓(𝑥)  
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And 𝑝(𝑥, 𝑦) − 𝑚𝑖𝑛{𝑝(𝑥, 𝑥), 𝑝(𝑦, 𝑦)}  ≤ 𝐿[𝑓(𝑥)]ℓ. 

If 𝑓 is lower semi-continuous, then there exists 𝑧 ∈ 𝑋 such that 𝑓(𝑥) = 0. 

Our aim of this paper is to give a local version of Theorem 1.1 and apply it to prove 

a preservation result on the existence of zeros of a family of functionals on partial metric 

spaces. Consequently, a preservation result for fixed point of a family of multi-valued 

mappings in partial metric spaces is derived. 

2. Main results   

Our first result is a local version of Theorem 1.1. 

Theorem 2.1.  Let (𝑋, 𝑝) be 0-complete partial metric space, 𝑥0 ∈ 𝑋, 𝑟 > 0  and 

𝑓: 𝑋 →  ℝ+ be a lower semi-continuous function on 𝑋. Assume that there exists 𝑘 ∈

(0,1), 𝐿 > 0 and ℓ > 0 such that for any 𝑥 ∈ 𝐵(𝑥0, 𝑟), there is some 𝑦 ∈ 𝑋 satisfying the 

following inequalities: 

𝑓(𝑦) ≤ 𝑘𝑓(𝑥)   (1) 

And 

𝑝(𝑥, 𝑦) − 𝑚𝑖𝑛{𝑝(𝑥, 𝑥), 𝑝(𝑦, 𝑦)}  ≤ 𝐿[𝑓(𝑥)]ℓ (2) 

If  [𝑓(𝑥0)]ℓ < (1 − 𝑘ℓ)𝑟/𝐿, then there exists 𝑥∗ ∈ 𝐵(𝑥0, 𝑟) such that 𝑓(𝑥∗) = 0, 

𝑝(𝑥∗, 𝑥∗) = 0 and 

𝑝(𝑥0, 𝑥∗) ≤
𝐿[𝑓(𝑥0)]ℓ

1 − 𝑘ℓ 
         

(3) 

Proof. We will construct, by induction, a sequence {𝑥𝑛} in 𝑋 starting from 𝑥0 such 

that for all 𝑛 ≥ 0: 

𝑥𝑛+1 ∈ 𝐵(𝑥0, 𝑟) (4) 

𝑓(𝑥𝑛+1) ≤ 𝑘𝑓(𝑥𝑛)   (5) 

𝑝(𝑥𝑛, 𝑥𝑛+1) − min{𝑝(𝑥𝑛, 𝑥𝑛), 𝑝(𝑥𝑛+1, 𝑥𝑛+1)} ≤ 𝐿[𝑓(𝑥𝑛)]ℓ (6) 

Indeed, since 𝑥0 ∈ 𝐵(𝑥0, 𝑟),  by the assumptions, there exists 𝑥1 ∈ 𝑋 such that 

𝑓(𝑥1) ≤ 𝑘 𝑓(𝑥0) 

and 

𝑝(𝑥0, 𝑥1) − min{𝑝(𝑥0, 𝑥0), 𝑝(𝑥1, 𝑥1)} ≤ 𝐿[𝑓(𝑥0)]ℓ. 

It follows from the latter inequality that 

𝑝(𝑥0, 𝑥1) − 𝑝(𝑥0, 𝑥0) ≤  𝑝(𝑥0, 𝑥1) − min{𝑝(𝑥0, 𝑥0), 𝑝(𝑥1, 𝑥1)}     

                   ≤ 𝐿[𝑓(𝑥0)]ℓ < (1 − 𝑘ℓ)𝑟 < 𝑟. 

Thus, 𝑥1 ∈ 𝐵(𝑥0, 𝑟). Therefore, (4) – (6) hold for 𝑛 = 0. 

Suppose for some positive integer 𝑚 we have generated 𝑥0, 𝑥1, … , 𝑥𝑚−1 satisfying 

(4) – (6) for 𝑛 = 0, 1, … , 𝑚 − 1. Since 𝑥𝑚 ∈ 𝐵(𝑥0, 𝑟), by the assumptions, there exists 

𝑥𝑚+1 ∈ 𝑋 such that 𝑓(𝑥𝑚+1) ≤ 𝑘𝑓(𝑥𝑚) and  

𝑝(𝑥𝑚, 𝑥𝑚+1) − min{𝑝(𝑥𝑚 , 𝑥𝑚), 𝑝(𝑥𝑚+1, 𝑥𝑚+1)} ≤ 𝐿[𝑓(𝑥𝑚)]ℓ. 

Thus, (5) and (6) hold for 𝑛 = 𝑚. Moreover, since (5) holds for 𝑛 = 0,1, … , 𝑚, one has 

𝑓(𝑥𝑖) ≤ 𝑘𝑓(𝑥𝑖−1) ≤ 𝑘2𝑓(𝑥𝑖−2) ≤ ⋯ ≤ 𝑘𝑖𝑓(𝑥0) 
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for all  𝑖 = 0,1, … , 𝑚. We have 

𝑝(𝑥0, 𝑥𝑚+1) − 𝑝(𝑥0, 𝑥0) ≤ ∑ 𝑝(𝑥𝑖 , 𝑥𝑖+1)

𝑚

𝑖=0

− ∑ 𝑝(𝑥𝑖, 𝑥𝑖)

𝑚

𝑖=0

                                                           

                 ≤ ∑[𝑝(𝑥𝑖 , 𝑥𝑖+1) − min{𝑝(𝑥𝑖 , 𝑥𝑖), 𝑝(𝑥𝑖+1, 𝑥𝑖+1)}]

𝑚

𝑖=0

 

         ≤ ∑ 𝐿[𝑓(𝑥𝑖)]ℓ ≤ 

𝑚

𝑖=0

∑ 𝐿[𝑘𝑖𝑓(𝑥0)]ℓ

𝑚

𝑖=0

                     

= 𝐿[𝑓(𝑥0)]ℓ ∑(𝑘ℓ)𝑖

𝑚

𝑖=0

<
𝐿[𝑓(𝑥0)]ℓ

1 − 𝑘ℓ
< 𝑟 .      

This means that 𝑥𝑚+1 ∈ 𝐵(𝑥0, 𝑟) and (4) holds for 𝑛 = 𝑚 + 1.  Thus, by induction, 

the construction of the sequence {𝑥𝑛} satisfying (4) - (6) is complete. 

By (5), we have for all 𝑛 that 

𝑓(𝑥𝑛) ≤ 𝑘𝑓(𝑥𝑛−1) ≤ ⋯ ≤ 𝑘𝑛𝑓(𝑥0)             (7) 

Since 𝑘 ∈ (0,1) and 𝑓(𝑥) ≥ 0 for all 𝑥 ∈ 𝑋, by (7) we have 

lim
𝑛→∞

𝑓(𝑥𝑛) = 0. 

Using (7) and (6), we have for all 𝑚 > 𝑛 ≥ 0 that 

𝑝(𝑥𝑛, 𝑥𝑚) ≤ ∑ 𝑝(𝑥𝑖 , 𝑥𝑖+1)

𝑚−1

𝑖=𝑛

− ∑ 𝑝(𝑥𝑖 , 𝑥𝑖)

𝑚−1

𝑖=𝑛+1

 

(8) 

≤ ∑ [𝑝(𝑥𝑖 , 𝑥𝑖+1) − min{𝑝(𝑥𝑖 , 𝑥𝑖), 𝑝(𝑥𝑖+1, 𝑥𝑖+1)}]

𝑚−1

𝑖=𝑛

 

 

≤ ∑ 𝐿[𝑓(𝑥𝑖)]ℓ ≤ 

𝑚−1

𝑖=𝑛

∑ 𝐿[𝑘𝑖𝑓(𝑥0)]ℓ

𝑚−1

𝑖=𝑛

 

 

= 𝐿[𝑓(𝑥0)]ℓ ∑ (𝑘ℓ)𝑖

𝑚−1

𝑖=𝑛

≤ 𝐿[𝑓(𝑥0)]ℓ ∑(𝑘ℓ)𝑖

∞

𝑖=𝑛

 

 

=
𝐿[𝑓(𝑥0)]ℓ

1 − 𝑘ℓ
(𝑘ℓ)𝑛. 

 

             Since  (𝑘ℓ)𝑛 → 0 as 𝑛 → ∞, lim
𝑛,𝑚→∞

𝑝(𝑥𝑛, 𝑥𝑚) = 0. This implies that {𝑥𝑛} is a 0-

Cauchy sequence. Since 𝑋 is 0-complete, there exists 𝑥∗ ∈ 𝑋 such that  𝑥𝑛 ⟶
𝑝

𝑥∗ and 

𝑝(𝑥∗, 𝑥∗) =  lim
𝑛→∞

𝑝(𝑥𝑛, 𝑥∗) =  lim
𝑛→∞

𝑝(𝑥𝑛, 𝑥𝑚) = 0. 

Since 𝑓 is lower semicontinuous, we have 𝑓(𝑥∗) ≤  liminf
𝑛→∞

𝑓(𝑥𝑛) = 0 which 

implies 𝑓(𝑥∗) = 0.   
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 In (8), letting 𝑛 = 0, we get 𝑝(𝑥0, 𝑥𝑚) ≤  
𝐿[𝑓(𝑥0)]ℓ

1−𝑘ℓ
 for all 𝑚 ≥ 1. Then, by Lemma 

1.1, one has 

𝑝(𝑥0, 𝑥∗) =  lim
𝑚→∞

𝑝(𝑥0, 𝑥𝑚) ≤  
𝐿[𝑓(𝑥0)]ℓ

1 − 𝑘ℓ
. 

This proves (3). Moreover, the latter inequality implies that 𝑝(𝑥0, 𝑥∗) < 𝑟 i.e.,  

𝑥∗ ∈ 𝐵(𝑥0, 𝑟). This ends the proof.  ∎ 

We next present a result on the preservation of the existence of zeros for a family 

of one-parameter functionals on partial metric spaces. 

Theorem 2.2. Let (𝑋, 𝑑) be 0-complete partial metric space, 𝛺 be an open subset 

of 𝑋 and {𝑓𝑡}𝑡∈[0,1] be a family of lower semi-continuous functionals 𝑓𝑡: 𝛺̅ →  ℝ+. Assume 

that the following conditions hold. 

(i) the set 𝑄 = {(𝑥, 𝑡) ∈ Ω × [0,1]: 𝑓𝑡(𝑥) = 0} is closed in the partial metric space 

(𝑋 × [0,1], 𝜌) where 𝜌((𝑥, 𝑡), (𝑦, 𝑠) = 𝑝(𝑥, 𝑦) + |𝑡 − 𝑠| for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡, 𝑠 ∈ [0,1]; 

(ii) there exist 𝑘 ∈ (0,1), 𝐿 > 0 and ℓ > 0 such that for each 𝑡 ∈ [0,1] and for 

each 𝑥 ∈ 𝛺̅, there is 𝑦 ∈ 𝑋 such that 

𝑓𝑡(𝑦) ≤ 𝑘𝑓𝑡 (𝑥)                                                                          

and 

𝑝(𝑥, 𝑦) − 𝑚𝑖𝑛{𝑝(𝑥, 𝑥), 𝑝(𝑦, 𝑦)}  ≤ 𝐿[𝑓𝑡 (𝑥)]ℓ.                                         

(iii) there exists a continuous increasing function 𝜃: [0,1] → ℝ such that 

|𝑓𝑡1
(𝑥) − 𝑓𝑡2

(𝑥)| ≤ |𝜃(𝑡1) − 𝜃(𝑡2)|  for all 𝑡1, 𝑡2 ∈ [0,1] and each 𝑥 ∈ 𝛺̅. 

Then, 𝑓1 has a zero in 𝛺 provided that then 𝑓0 has a zero in 𝛺. 

Proof.  Since 𝑓0 has a zero in 𝛺, 𝑄 is a nonempty set. We define the partial order 

relation ≼ on 𝑄 as follows: 

(𝑥, 𝑡) ≼ (𝑦, 𝑠)        ⟺         𝑡 ≤ 𝑠       𝑎𝑛𝑑    𝑝(𝑥, 𝑦) ≤  
2𝐿

1 − 𝑘ℓ
[𝜃(𝑠) − 𝜃(𝑡)]. 

Let 𝐷 be a totally ordered subset of 𝑄 and set 

𝑡∗ = sup{𝑡 ∈ [0,1]: (𝑥, 𝑡) ∈ 𝐷}. 

Then, there exists a sequence {(𝑥𝑛, 𝑡𝑛)} in 𝐷 such that (𝑥𝑛, 𝑡𝑛) ≼ (𝑥𝑛+1, 𝑡𝑛+1)  and  

𝑡𝑛 → 𝑡∗ as 𝑛 → ∞.  Thus, for all 𝑚 > 𝑛, 𝑡𝑛 ≤ 𝑡𝑚 and 

𝑝(𝑥𝑛, 𝑥𝑚) ≤  
2𝐿

1 − 𝑘ℓ
[𝜃(𝑡𝑚) − 𝜃(𝑡𝑛)]      

(9) 

Since 𝜃 is continuous and 𝑡𝑛 → 𝑡∗ as 𝑛 → ∞, it follows from (9) that 𝑝(𝑥𝑛, 𝑥𝑚) →

0 as 𝑚, 𝑛 → ∞. Thus, {𝑥𝑛} is a 0-Cauchy in 𝑋. By the 0-completeness of 𝑋, {𝑥𝑛} 

converges to some 𝑥∗ ∈ 𝑋. Since 𝑄 is closed, {(𝑥𝑛, 𝑡𝑛)} ⊂ 𝑄 and (𝑥𝑛, 𝑡𝑛) → (𝑥∗, 𝑡∗) as 

𝑛 → ∞, we have 𝑓𝑡∗(𝑥∗) = 0. We claim that (𝑥∗, 𝑡∗) is an upper bound of 𝐷. Indeed, 

letting 𝑚 → ∞ in (9), one gets 

𝑝(𝑥𝑛, 𝑥∗) ≤  
2𝐿

1 − 𝑘ℓ
[𝜃(𝑡∗) − 𝜃(𝑡𝑛)] 
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for all 𝑛. This together with the fact 𝑡𝑛 ≤ 𝑡∗ for all 𝑛 implies that (𝑥𝑛, 𝑡𝑛) ≼

(𝑥∗, 𝑡∗) for all 𝑛. Let (𝑥, 𝑡) be an any element of 𝐷. Then, by the convergence of {𝑡𝑛} to 

𝑡∗, there exists 𝑁 ∈ ℕ such that 𝑡∗ − 𝑡𝑁 ≤ 𝑡∗ − 𝑡 . Hence, 𝑡 ≤ 𝑡𝑁. This implies that (𝑥, 𝑡) 

≼ (𝑥𝑁 , 𝑡𝑁). By the transitivity, we have (𝑥, 𝑡) ≼ (𝑥∗, 𝑡∗). Therefore, (𝑥∗, 𝑡∗) is an upper 

bound of 𝐷. By the Zorn lemma, 𝑄 has a maximal element. Let (𝑥̅, 𝑡̅) be a maximal 

element of 𝑄. We claim that 𝑡̅ = 1. Assume to the contrary that 𝑡̅ < 1. By the continuity 

of 𝜃, we can choose 𝑡 ∈ (𝑡̅, 1) and 

𝑟 =
2𝐿

1 − 𝑘ℓ
[𝜃(𝑡) − 𝜃(𝑡̅)]ℓ 

such that 𝐵(𝑥̅, 𝑟) ⊂ Ω. By (iii), we have  

[𝑓𝑡(𝑥̅)]ℓ = |𝑓𝑡(𝑥̅) − 𝑓𝑡̅(𝑥̅)|ℓ ≤ |𝜃(𝑡) − 𝜃(𝑡̅)|ℓ =
(1 − 𝑘ℓ)𝑟

2𝐿
<

(1 − 𝑘ℓ)𝑟

𝐿
. 

By Theorem 2.1, there exists 𝑥 ∈ 𝐵(𝑥̅, 𝑟) such that 𝑓𝑡(𝑥) = 0. Thus, (𝑥, 𝑡) ∈ 𝑄. 

This contradicts the maximality of (𝑥̅, 𝑡̅) in 𝑄. Hence, 𝑡̅ = 1 and (𝑥̅, 1) ∈ 𝑄. That is, 𝑓1 

has a zero in Ω. This ends the proof.     ∎ 

We finally apply Theorem 2.2 to derive a preservation result for fixed points of a 

family of multi-valued mappings in partial metric spaces. For some results of this type, 

we refer the reader to, e.g., [17] and references therein. 

Theorem 2.3. Let (𝑋, 𝑝) be a 0-complete partial metric space and 𝛺 ⊂ 𝑋 be an 

open set. Assume that {𝐹𝑡}𝑡∈[0,1] is a family of multi-valued mappings 𝐹𝑡: 𝛺̅ → 𝐶𝐵(𝑋) 

satisfying the following conditions: 

(a)  𝑥 ∉ 𝐹𝑡(𝑥) for all 𝑥 ∈ 𝛺̅\𝛺 and 𝑡 ∈ [0,1]; 

(b) there exist 𝑘 ∈ (0,1), 𝐿 > 0 and ℓ > 0 such that for any 𝑥 ∈ 𝛺̅ there is some 𝑦 ∈ 𝑋 

satisfying 

𝑝(𝑦, 𝐹𝑡(𝑦)) ≤ 𝑘𝑝(𝑥, 𝐹𝑡(𝑥)) 

and 

𝑝(𝑥, 𝑦) − 𝑚𝑖𝑛{𝑝(𝑥, 𝑥), 𝑝(𝑦, 𝑦)} ≤ 𝐿[𝑑(𝑥, 𝐹𝑡(𝑥))]
ℓ
 

for each 𝑡 ∈ [0,1]; 

(c) there exists an increasing continuous function 𝜂: [0,1] → ℝ such that 

𝐻𝑝(𝐹𝑡(𝑥), 𝐹𝑠(𝑥)) ≤ |𝜂(𝑡) − 𝜂(𝑠)|, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡, 𝑠 ∈ [0,1]𝑎𝑛𝑑 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝛺̅; 

(d) for each 𝑡 ∈ [0,1], the function 𝑥 ↦ 𝑝(𝑥, 𝐹𝑡(𝑥)) is lower semi-continuous. 

Then, 𝐹1 has a fixed point in 𝛺 provided that 𝐹0 has a fixed point in 𝛺. 

Proof.  For each 𝑡 ∈ [0,1], let 𝑓𝑡: Ω̅ → ℝ+ be defined by 𝑓𝑡(𝑥) = 𝑝(𝑥, 𝐹𝑡(𝑥)) for all 

𝑥 ∈  𝛺̅.  Then, by (d), 𝑓𝑡 is lower semi-continuous for each 𝑡 ∈ [0,1]. By (b), 𝑓𝑡 satisfies 

condition (ii) of Theorem 2.2.  We next show that {𝑓𝑡 } satisfies condition (iii) of Theorem 

2.2 with 𝜃 = ℎ𝜂. Indeed, let 𝑡1, 𝑡2 ∈ [0,1] and 𝑥 ∈ Ω̅. Let 𝑦2 be an arbitrary element in 

𝐹𝑡2
(𝑥). By Lemma 1.3, there exists 𝑦1 ∈ 𝐹𝑡1

(𝑥) such that 𝑝(𝑦1, 𝑦2) ≤

ℎ𝐻(𝐹𝑡1
(𝑥), 𝐹𝑡2

(𝑥)). Then, by (c), we have 
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𝑓𝑡1
(𝑥) = 𝑝 (𝑥, 𝐹𝑡1

(𝑥)) ≤ 𝑝(𝑥, 𝑦1) ≤ 𝑝(𝑥, 𝑦2) + 𝑝(𝑦1, 𝑦2) − 𝑝(𝑦2, 𝑦2) 

                   ≤ 𝑝(𝑥, 𝑦2) + ℎ𝐻(𝐹𝑡1
(𝑥), 𝐹𝑡2

(𝑥)) 

                   ≤ 𝑝(𝑥, 𝑦2) + |ℎ𝜂(𝑡1) − ℎ𝜂(𝑡2)|. 

Since 𝑦2 ∈ 𝐹𝑡2
(𝑥) is arbitrary, it follows from the latter inequality that 

𝑓𝑡1
(𝑥) ≤ 𝑓𝑡2

(𝑥) + |ℎ𝜂(𝑡1) − ℎ𝜂(𝑡2)|.  

Changing the roles of 𝑡1 and 𝑡2, one also gets 

𝑓𝑡2
(𝑥) ≤ 𝑓𝑡1

(𝑥) + |ℎ𝜂(𝑡1) − ℎ𝜂(𝑡2)|.  

Thus, 

|𝑓𝑡1
(𝑥) − 𝑓𝑡2

(𝑥)| ≤  |ℎ𝜂(𝑡1) − ℎ𝜂(𝑡2)|.  

We now show that the set 𝑄 = {(𝑥, 𝑡) ∈ Ω × [0,1]: 𝑓𝑡(𝑥) = 0} is closed. Let 

{(𝑥𝑛, 𝑡𝑛)} ⊂ 𝑄 be such that (𝑥𝑛, 𝑡𝑛) → (𝑥∗ , 𝑡∗) ∈ Ω̅ × [0,1] as 𝑛 → ∞.  Then, 𝑥𝑛 → 𝑥∗ 

and 𝑡𝑛 → 𝑡∗ as 𝑛 → ∞.  Since {𝑓𝑡} satisfies condition (iii) of Theorem 2.2 with 𝜃 = ℎ𝜂, 

one has 0 ≤ 𝑓𝑡∗(𝑥𝑛) = |𝑓𝑡𝑛
(𝑥𝑛) − 𝑓𝑡∗(𝑥𝑛)| ≤ ℎ|𝜂(𝑡𝑛) − 𝜂(𝑡∗)|. 

It follows from the continuity of 𝜂 that lim
𝑛→∞

𝑓𝑡∗(𝑥𝑛) = 0. Then, by the lower semi-

continuity of 𝑓𝑡∗, 0 ≤ 𝑓𝑡∗(𝑥∗) ≤ lim
n→∞

inf 𝑓𝑡∗(𝑥𝑛) = 0. 

This implies that  𝑓𝑡∗(𝑥∗) = 0. By (a), (𝑥∗, 𝑡∗) must belong to 𝑄. Thus, 𝑄 is closed. 

Since 𝐹𝑡 has closed values for all 𝑡 ∈ [0,1], 𝑥 is a fixed point of 𝐹𝑡 if and only if 𝑥 is a 

zero of 𝑓𝑡. Applying Theorem 2.2, we get the desired conclusion.∎ 

3. Conclusion 

 We have proved a local version for a result on the existence of zeros of a functional 

defined on a partial metric space presented in [10]. Based on this result, we have 

established a preservation result on the existence of zeros of a family of parametric 

functionals on partial metric spaces. Consequently, we have derived a preservation result 

for the existence of fixed points of a family of multi-valued mappings in partial metric 

spaces. It would be interesting to extend the results of this paper to multi-valued functionals 

and apply obtained results to fixed point theory. We leave this topic for future works. 
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