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Abstract: In this paper, we present a random fixed point theorem for completely random 

operators satisfying a rational contractivity condition. Examples are also given to 

illustrate our results. 
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1. Introduction  

Fixed point theory is one of the most powerful tools inmathematics. It has many 

applications in many branches of mathematics and other sciences. Fixed point methods 

have been proven particularly helpful in the study of theories of differential equations, 

integral equations, and functional integral equations. They have also been proven 

beneficial in optimization theory and a variety of other fields, including biology, 

chemistry, economics, engineering, game theory, and physics.  

Starting from Brouwer’s fixed point theorem (1910), Banach’s contraction principle 

(1922) and Schauder’s fixed point theorem (1930), the fixed point theory has been developed 

in many directions. In the mid 1950s, O. Hans and A. Spacek initiated to prove fixed point 

theorems for random operators in separable metric spaces (see, [1, 2]). These results are 

stochastic generalizations of Banach’s fixed point theorem. In 1966, A. Mukherjee [3] 

generalized Schaduer’s fixed point theorem and presented a random fixed point theorem in 

atomic probability measure spaces. Specially, in 1976, A. T. Bharucha-Reid published an 

interesting survey article on fixed point theorems for random operators  [4]. Since then many 

authors have generalized existing deterministic and random fixed point theorems to obtain 

new random fixed poin theorems (see, e.g., [5, 6, 7, 8, 9] and references therein).  

In this paper, following the idea and techniques by D. H. Thang and P. T. Anh in [7, 8], 

we prove a fixed point theorem for completely random operators satisfying a new 

condition involving a rational expression. We also present two examples to illustrate the 

obtained result.  

2.  Preliminaries  

In this section, we recall some definitions and basic results concerning completely 

random operators. 
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Let 𝑋 be a metric space and ℬ(𝑋) be the Borel 𝜎-algebra of 𝑋 (the smallest 𝜎-

algebra containing all open subsets of 𝑋 ). Let (Ω, ℱ) be a measurable space. A mapping 

𝜉: Ω → 𝑋 is called ℱ-measurable if 

𝜉−1(𝐵) = {𝜔 ∈ Ω: 𝜉(𝜔) ∈ 𝐵} ∈ ℱ 

for all 𝐵 ∈ ℬ(𝑋). Let (Ω, ℱ, ℙ) be a probability space. If 𝜉: Ω → 𝑋 is ℱ-measurable then 𝜉 

is called a 𝑋-valued random variable. We denote by 𝐿0
𝑋(Ω) the set of all equivalent class of 

𝑋-valued random variables. This set is equipped with the topology of convergence in 

probability, namely, the basis neighborhoods for this topology are of the form 

𝑉(𝑢0, 𝜀, 𝛼) = {𝑢 ∈ 𝐿0
𝑋(Ω): ℙ{∥∥𝑢 − 𝑢0∥∥ > 𝜀} < 𝛼}. 

Note that this topology is metrizable. The metric 𝑑 on 𝐿0
𝑋(Ω) that induces this topology 

can be given by 

𝑑(𝑢, 𝑣) = 𝔼
∥ 𝑢 − 𝑣 ∥

1+∥ 𝑢 − 𝑣 ∥
. 

Under this metric, 𝐿0
𝑋(Ω) is a complete metric space (see [7]) and a sequence (𝜉𝑛) ⊂

𝐿0
𝑋(Ω) converges to 𝜉 if and only if (𝜉𝑛) converges to 𝜉 in probability. 

Definition 2.1. [10] Let 𝑋, 𝑌 be two separable Banach spaces. 

(i) A mapping 𝐹: Ω × 𝑋 → 𝑌 is said to be a random operator if for each fixed 𝑥 in 

𝑋, the mapping 𝜔 ↦ 𝐹(𝜔, 𝑥) is measurable. 

(ii) A random operator 𝐹: Ω × 𝑋 → 𝑌 is said to be continuous if for each 𝜔 in Ω 

the mapping 𝑥 ↦ 𝐹(𝜔, 𝑥) is continuous. 

Definition 2.2. [7] Let 𝑋, 𝑌 be two separable Banach spaces.  

(i) A mapping Φ: L0
X(Ω) → 𝐿0

𝑌(Ω)is called a completely random operator. 

(ii) The completely random operator Φ is said to be continuous in probability if 

the  mapping Φ: L0
X(Ω) → 𝐿0

𝑌(Ω) is continuous, i.e., for each sequence (𝑢𝑛) in 𝐿0
𝑋(Ω) 

such that lim
𝑛

𝑢𝑛 = 𝑢 in probability, we have lim
𝑛

Φ𝑢𝑛 = Φ𝑢 in probability.  

(iii) The completely random operator Φ is said to be an extension of a random 

operator 𝐹: Ω × 𝑋 → 𝑌 if for each 𝑥 in 𝑋  

𝛷𝑥(𝜔)  =  𝐹(𝜔, 𝑥) 𝑎. 𝑠. , 

where for each 𝑥 in 𝑋, 𝑥 denotes the random variable 𝑢 in 𝐿0
𝑋(Ω) given by 𝑢(𝜔 )  =  𝑥 a.s.  

Definition 2.3. Let Φ: 𝐿0
𝑋(Ω) → 𝐿0

𝑋(Ω) be a completely random operator. An 𝑋-valued 

random variable 𝜉 ∈ 𝐿0
𝑋(Ω) is called a fixed point of Φ if Φ𝜉 = 𝜉 a.s.  

3. Main results  

From now on, we alway assume that (Ω, ℱ, ℙ) is a complete probability space and 

𝑋 is a separable Banach space. Our main result is stated as follows.  

Theorem 3.1. Let Φ: 𝐿0
𝑋(Ω) → 𝐿0

𝑋(Ω) be a continuous in probability completely random 

operator and 𝛼, 𝐿, ℓ be positive real numbers with ℓ ≤ 1/𝛼. Assume that for any random 

variables 𝑢, 𝑣 ∈ 𝐿0
𝑋(Ω) and for any 0 < 𝑡 < ℓ, we have 

ℙ(∥ Φ𝑢 − Φ𝑣 ∥> 𝑡) ≤ ℙ (
∥ 𝑢 − 𝑣 ∥

1 + 𝛼 ∥ 𝑢 − 𝑣 ∥
+ 𝐿 ∥ 𝑢 − Φ𝑣 ∥> 𝑡).                    (3.1) 
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If there exist 𝑝 > 0 and 𝑢0 ∈ 𝐿0
𝑋(Ω) such that 𝔼∥∥Φ𝑢0 − 𝑢0∥∥𝑝 < ∞, then Φ has a 

random fixed point in 𝐿0
𝑋(Ω). 

Proof. Set 𝑘(𝑡) = 1 − 𝛼𝑡 for all 𝑡 ∈ (0, ℓ). Then, 𝑘 is deceasing in (0, ℓ) and 

𝑘(𝑡) ∈ (0,1) for all 𝑡 ∈ (0, ℓ). We have 

1

𝑘 (
𝑡

𝑘(𝑡)
)

>
1

𝑘(𝑡)
 for all 𝑡 ∈ (0,

ℓ

2
). 

Thus, for each 𝑢, 𝑣 ∈ 𝐿0
𝑋(Ω) and for all 𝑠 ∈ (0, ℓ), 𝑡 ∈ (0, ℓ/2), one has 

{∥ 𝑢 − 𝑣 ∥>
𝑠

𝑘 (
𝑡

𝑘(𝑡)
)

} ⊂ {∥ 𝑢 − 𝑣 ∥>
𝑠

𝑘(𝑡)
} 

and, therefore, 

ℙ (∥ 𝑢 − 𝑣 ∥>
𝑠

𝑘 (
𝑡

𝑘(𝑡)
)

) ≤ ℙ (∥ 𝑢 − 𝑣 ∥>
𝑠

𝑘(𝑡)
).                         (3.2) 

Let 𝑢0 ∈ 𝐿0
𝑋(Ω) be such that 𝔼∥∥Φ𝑢0 − 𝑢0∥∥𝑝 < ∞. We construct the sequence {𝑢𝑛} 

in 𝐿0
𝑋(Ω) defined by 

𝑢𝑛+1 = Φ𝑢𝑛,  𝑛 = 0, 1, 2, ⋯ 

We are going to show that {𝑢𝑛} is a Cauchy sequence in 𝐿0
𝑋(Ω). For each 𝑛, we have 

ℙ(∥∥𝑢𝑛+1 − 𝑢𝑛∥∥ > 𝑡)  = ℙ(∥∥Φ𝑢𝑛 − Φ𝑢𝑛−1∥∥ > 𝑡)

 ≤ ℙ (
∥∥𝑢𝑛 − 𝑢𝑛−1∥∥

1 + 𝛼∥∥𝑢𝑛 − 𝑢𝑛−1∥∥
+ 𝐿∥∥𝑢𝑛 − Φ𝑢𝑛−1∥∥ >

𝑡

𝑘(𝑡)
)

 = ℙ (
∥∥𝑢𝑛 − 𝑢𝑛−1∥∥

1 + 𝛼∥∥𝑢𝑛 − 𝑢𝑛−1∥∥
> 𝑡)

 = ℙ (∥∥𝑢𝑛 − 𝑢𝑛−1∥∥ >
𝑡

1 − 𝛼𝑡
) .

 

Using (3.2), one has 

ℙ(∥∥𝑢𝑛+1 − 𝑢𝑛∥∥ > 𝑡)  ≤ ℙ (∥∥𝑢𝑛 − 𝑢𝑛−1∥∥ >
𝑡

𝑘(𝑡)
)

 ≤ ℙ (∥∥𝑢𝑛−1 − 𝑢𝑛−2∥∥ >
𝑡

𝑘(𝑡)𝑘 (
𝑡

𝑘(𝑡)
)

)

 ≤ ℙ (∥∥𝑢𝑛−1 − 𝑢𝑛−2∥∥ >
𝑡

[𝑘(𝑡)]2
)

 ≤ ⋯ ≤ ℙ (∥∥𝑢1 − 𝑢0∥∥ >
𝑡

[𝑘(𝑡)]𝑛
)

 = ℙ (∥∥Φ𝑢0 − 𝑢0∥∥ >
𝑡

𝑘𝑛
)

 

where 𝑘 = 𝑘(𝑡). By Chebyshev's inequality, we have 

ℙ(∥∥𝑢𝑛+1 − 𝑢𝑛∥∥ > 𝑡) ≤ ℙ (∥∥Φ𝑢0 − 𝑢0∥∥ >
𝑡

𝑘𝑛
) ≤ 𝔼∥∥Φ𝑢0 − 𝑢0∥∥𝑝 (𝑘𝑛)𝑝

𝑡𝑝
= 𝐶

(𝑘𝑛)𝑝

𝑡𝑝
, 
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where 𝐶 = 𝔼∥∥Φ𝑢0 − 𝑢0∥∥𝑝
. 

For 𝑘 < 𝑥 < 1, set 𝑞 =
𝑥

𝑘
. We have 𝑟 > 1 and 

(𝑞 − 1) (
1

𝑞
+

1

𝑞2
+ ⋯ +

1

𝑞𝑚
) +

1

𝑞𝑚
= 1 for all 𝑚 ≥ 1 

Thus, for all 𝑡 ∈ (0,1/𝛼) and for all 𝑚, 𝑛 ∈ ℕ, one has 

ℙ(∥∥𝑢𝑛+𝑚 − 𝑢𝑛∥∥ > 𝑡) ≤ ℙ(∥∥𝑢𝑛+𝑚 − 𝑢𝑛∥∥ > (1 − 1/𝑞𝑚)𝑡)

≤ ℙ(∥∥𝑢𝑛+𝑚 − 𝑢𝑛+𝑚−1∥∥ > 𝑡(𝑞 − 1)/𝑞𝑚)

 + ⋯ + ℙ(∥∥𝑢𝑛+1 − 𝑢𝑛∥∥ > 𝑡(𝑞 − 1)/𝑞)

=
𝐶

[(𝑞 − 1)𝑡]𝑝
[(𝑞𝑚)𝑝(𝑘𝑛+𝑚−1)𝑝 + ⋯ + 𝑞𝑝(𝑘𝑛)𝑝]

=
𝐶

[(𝑞 − 1)𝑡]𝑝
(𝑘𝑛)𝑝𝑞𝑝[(𝑘𝑞)𝑝(𝑚−1) + ⋯ + (𝑘𝑞)𝑝 + 1]

=
𝐶

[(𝑞 − 1)𝑡]𝑝
(𝑘𝑛)𝑝𝑞𝑝

1 − (𝑘𝑞)𝑚𝑝

1 − (𝑘𝑞)𝑝

≤
𝐶𝑞𝑝

[(𝑞 − 1)𝑡]𝑝[1 − (𝑞𝑟)𝑝]𝑛
𝑘𝑛𝑝

 

Since 

lim
𝑛→∞

 
𝐶𝑞𝑝

[(𝑞 − 1)𝑡]𝑝[1 − (𝑞𝑟)𝑝]
𝑘𝑛𝑝 = 0, 

we have lim
𝑛→∞

 ℙ(∥∥𝑢𝑛+𝑚 − 𝑢𝑛∥∥ > 𝑡) = 0 

for all 𝑡 ∈ (0, ℓ/2). This implies that {𝑢𝑛} is a Cauchy sequence in 𝐿0
𝑋(Ω). Thus, there 

exists 𝜁 ∈ 𝐿0
𝑋(Ω) such that 𝑝 − lim𝑛→∞  𝑢𝑛 = 𝜁. It follows from 𝑢𝑛+1 = Φ𝑢𝑛 and the 

continuity in probability of Φ that 𝜁 = Φ𝜁. That is, 𝜁 is a random fixed point of Φ. This 

ends the proof. 

Remark 3.1. It is worth remarking that a fixed point of operators in theorems presented in 

[7,8] is unique while fixed points of operators in our theorem are not necessarily unique. 

The following simple example showing that an operator satisfying conditions in 

Theorem 3.1 may have many random fixed points. 

Example 3.1. Consider the probability space (Ω, ℱ, ℙ), where Ω = [0,1], ℱ is the 

𝜎-algebra of Lebesgue measurable subsets of [0,1] and ℙ is the Lebesgue mesuare on Ω. 

Let  

𝑋 = ℝ and Φ: 𝐿0
𝑋(Ω) → 𝐿0

𝑋(Ω) be defined by Φ𝑢(𝜔) = 𝑢(𝜔) for all 𝜔 ∈ [0,1] and for all 

𝑢 ∈ 𝐿0
𝑋(Ω). 

Let 𝛼 = 1 and 𝐿 = 1. For 𝑡 > 0, set 

𝐴 = {𝜔 ∈ Ω: ∥ Φ𝑢(𝜔) − Φ𝑣(𝜔) ∥> 𝑡} = {𝜔 ∈ Ω: ∥ 𝑢(𝜔) − 𝑣(𝜔) ∥> 𝑡} 

and 

𝐵  = {𝜔 ∈ Ω:
∥ 𝑢(𝜔) − 𝑣(𝜔) ∥

1 + 𝛼 ∥ 𝑢(𝜔) − 𝑣(𝜔) ∥
+ 𝐿 ∥ 𝑢(𝜔) − Φ𝑣(𝜔) ∥> 𝑡}

 = {𝜔 ∈ Ω:
∥ 𝑢(𝜔) − 𝑣(𝜔) ∥

1+∥ 𝑢(𝜔) − 𝑣(𝜔) ∥
+∥ 𝑢(𝜔) − 𝑣(𝜔) ∥> 𝑡} .
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It is evident that 𝐴 ⊂ 𝐵 for each 𝑡 > 0. It follows that ℙ(𝐴) ≤ ℙ(𝐵). Hence, the 

inequality (3.1) holds. Therefore, all conditions in Theorem 3.1 are satisfied. By Theorem 

3.1, Φ has a random fixed point in 𝐿0
𝑋(Ω). In fact, each 𝑢 ∈ Ł0

𝑋(Ω) is a random fixed 

point of Φ. It means that Φ has infinitely many fixed points. 

Corrolary 3.1. Let Φ: 𝐿0
𝑋(Ω) → 𝐿0

𝑋(Ω) be a continuous in probability completely 

random operator and 𝛼, ℓ be positive real numbers with ℓ ≤ 1/𝛼. Assume that for any 

random variables 𝑢, 𝑣 ∈ 𝐿0
𝑋(Ω) and for any 0 < 𝑡 < ℓ, we have 

ℙ(∥ Φ𝑢 − Φ𝑣 ∥> 𝑡) ≤ ℙ (
∥ 𝑢 − 𝑣 ∥

1 + 𝛼 ∥ 𝑢 − 𝑣 ∥
> 𝑡). 

If there exist 𝑝 > 0 and 𝑢0 ∈ 𝐿0
𝑋(Ω) such that 𝔼∥∥Φ𝑢0 − 𝑢0∥∥𝑝 < ∞, then Φ has a 

unique random fixed point in 𝐿0
𝑋(Ω). 

Proof. The existence of a random fixed point 𝜁 for Φ follows Theorem 3.1. We 

now prove the uniqueness of 𝜁. Assume that 𝜂 is another fixed point of Φ such that 𝜂 ≠
𝜁. Them, ℙ(∥ 𝜁 − 𝜂 ∥> 𝑡) > 0 for some 𝑡 > 0. We may assume that 𝑡 ∈ (0, ℓ/2). By 

(3.3) and arguing as in the proof of Theorem 3.1, we have for any positive integer 𝑛 that 
ℙ(∥ 𝜁 − 𝜂 ∥> 𝑡)  = ℙ(∥ Φ𝜁 − Φ𝜂 ∥> 𝑡)

 ≤ ℙ (
∥ 𝜁 − 𝜂 ∥

1 + 𝛼 ∥ 𝜁 − 𝜂 ∥
> 𝑡)

 = ℙ (∥ 𝜁 − 𝜂 ∥>
𝑡

𝑘(𝑡)
)

 ≤ ⋯

 ≤ ℙ (∥ 𝜁 − 𝜂 ∥>
𝑡

[𝑘(𝑡)]𝑛
)

 

where 𝑘(𝑡) = 1 − 𝛼𝑡 ∈ (0,1). Letting 𝑛 → ∞ in the latter in equality, we get ℙ(∥ 𝜁 − 𝜂 ∥
> 𝑡) ≤ 0. This is a contradiction. Therefore, Φ has a unique random fixed point. 

We next present an example to support the latter result. 

Example 3.2. We consider the probability space (Ω, ℱ, ℙ), where Ω = [0,1], ℱ is 

the 𝜎-algebra of Lebesgue measurable subsets of [0,1] and ℙ is the Lebesgue mesuare on 

Ω. Let 𝑋 = ℝ and Φ: 𝐿0
𝑋(Ω) → 𝐿0

𝑋(Ω) be defined by 

Φ𝑢(𝜔) = {

1

2
𝑢(2𝜔)  if 0 ≤ 𝜔 ≤

1

2
1

3
𝑢(2𝜔 − 1)  if 

1

2
< 𝜔 ≤ 1.

 

Set 

𝐴 =  {𝜔 ∈ Ω: ∥ Φ𝑢(𝜔) − Φ𝑣(𝜔) ∥> 𝑡}

= {𝜔 ∈ [0,
1

2
] : ∥ Φ𝑢(𝜔) − Φ𝑣(𝜔) ∥> 𝑡}

 ∪ {𝜔 ∈ [
1

2
, 1] : ∥ Φ𝑢(𝜔) − Φ𝑣(𝜔) ∥> 𝑡}

= {𝜔 ∈ [0,
1

2
] : ∥ 𝑢(2𝜔) − 𝑣(2𝜔) ∥> 2𝑡}

=: 𝐴1 ∪ 𝐴2.
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and 

𝐵  = {𝜔 ∈ Ω:
∥ 𝑢(𝜔) − 𝑣(𝜔) ∥

1+∥ 𝑢(𝜔) − 𝑣(𝜔) ∥
> 𝑡}

 = {𝜔 ∈ Ω: ∥ 𝑢(𝜔) − 𝑣(𝜔) ∥>
𝑡

1 − 𝑡
} .

 

For 0 < 𝑡 < ℓ: =
1

2
, we have 

𝑡

1−𝑡
< 2𝑡. Thus, 

𝐶: = {𝜔 ∈ Ω: ∥ 𝑢(𝜔) − 𝑣(𝜔) ∥> 2𝑡} ⊂ {𝜔 ∈ Ω: ∥ 𝑢(𝜔) − 𝑣(𝜔) ∥>
𝑡

1 − 𝑡
}, 

and ℙ(𝐶) ≤ ℙ(𝐵). On the other hand, we can easily see that 𝐶 = 2𝐴1 and hence ℙ(𝐶) =

2ℙ(𝐴1). 

Since 
𝑡

1−𝑡
< 3𝑡 for all 0 < 𝑡 < ℓ, we have 

𝐷: = {𝜔 ∈ Ω: ∥ 𝑢(𝜔) − 𝑣(𝜔) ∥> 3𝑡} ⊂ {𝜔 ∈ Ω: ∥ 𝑢(𝜔) − 𝑣(𝜔) ∥>
𝑡

1 − 𝑡
}, 

and ℙ(𝑫) ≤ ℙ(𝑩). Moreover, 

𝐴2 = {𝜔 ∈ [0,
1

2
] : ∥ 𝑢(2𝜔) − 𝑣(2𝜔) ∥> 3𝑡} 

and we also see that 𝐷 = 3𝐴2. Hence, ℙ(𝐷) = 2ℙ(𝐴2). 

We have 

ℙ(𝐴) = ℙ(𝐴1) + ℙ(𝐴2) =
1

2
ℙ(𝐶) +

1

2
ℙ(𝐷) ≤

1

2
ℙ(𝐵) +

1

2
ℙ(𝐵) = ℙ(𝐵). 

Therefore, (3.3) holds for 𝛼 = 1 and ℓ = 1/2. One can see that 𝑢 = 0 is the unique 

random fixed point of Φ. 

4. Conclusion 

We have proved a new random fixed point for completely random operators and 

presented two examples to suport the obtained results. It is interesting to continue 

investigating new fixed point results for completely random operators satisfying new 

contractive conditions.  
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