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Abstract: In this paper, we prove some invariant properties on the CS-module and 

application. We also prove some preserving correspondences of closed submodules, and 

then apply it to transfer the CS, max CS, min CS, max-min CS and (strongly) FI-extending 

properties of a module to its endomorphism ring. Endomorphism rings of modules with Baer 

and Rickart properties are studied. Furthermore, the right-left symmetry of Goldie, CS and 

max-min CS conditions on the endomorphism rings of prime and semiprime modules are 

investigated. Some examples are discussed to guarantee that our main results make sense.  

Keywords: Baer modules, CS modules, FI-extending modules, Goldie modules, max-min 

CS modules, prime modules, semiprime modules, right Rickart property.   

1. Introduction 

Throughout this paper, R  is an associative ring with identity, and M is a unitary 

right 𝑅 −module with its endomorphism ring : ( ).RS End M=  We denote 𝑋 ≤ 𝑀 (resp. 

𝑋 ≤∗ 𝑀  for a submodule (resp. an essential submodule) X  of .M  A submodule 𝑋 ≤ 𝑀 

is a closed submodule if 𝑋 ≤∗ 𝑌  implies 𝑋 = 𝑌  for any submodule Y of M. For every 

𝑋 ≤ 𝑀 there exists a maximal essential extension Y containing X. Then Y  is a closed 

submodule and called a closure of X. We write 𝑟𝑋(𝑌) and 𝑙𝑋(𝑌) for the right annihilator 

and the left annihilator of Y in X, respectively. We denote the uniform dimension of the 

module 𝑀𝑅  by  𝑢 − 𝑑𝑖𝑚(𝑀𝑅). 
We adopt the notions of primeness and semi-primeness in module category 

introduced by N.V. Sanh et al. [11]. An X-annihilator  X of M  is a submodule  for some 

subset T of S. A submodule X of M is fully invariant if 𝑓(𝑋) ≤ 𝑋  for every 

endomorphism 𝑓. For a submodule X of M we write  ( )XI f S f M X=   = 

( , ).Hom M X  For a subset K of S, we write ( ) : ( ).
f K

KM K M f M


= = It is clear that XI  

is a right ideal of S and KM is a submodule of M. M is retractable if 0XI  for every 

nonzero submodule X. M is a self-generator  if it generates every submodule, i.e. 

( )XX I M=   for every submodule X. Obviously, every self-generator is retractable. M is  

nonsingular if for any ,m M  
*( )R Rr m R implies m=0. 
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Recall that a CS module (resp.  min CS module) provides that every (resp. minimal 

or uniform) closed submodule is a direct summand. M is called a  max CS module if 

every maximal closed submodule with nonzero left annihilator in S is a direct summand. 

M is a  max-min CS module if it is both max CS and min CS. A ring R is a right CS (resp. 

right max CS or right min CS or right max-min CS) ring if RR  is a CS (resp. max CS or 

min CS or max-min CS) module. Analogous notions on the left side of R R are defined 

similarly. We refer readers to [6] and [13] for more details about max CS, min CS, max-

min CS rings and modules. 

According to G.F. Birkenmeier et al. [4], M is a (strongly) FI-extending module if 

every fully invariant submodule of M is essential in a (fully invariant) direct summand of 

M. R is a right (strongly) FI-extending if RR is a (strongly) FI-extending module. 

Symmetry of extending properties in associative rings are extensively 

investigated in many papers [2, 3, 4, 6]. Our work aims to generalize such the 

investigations to modules as well as some results in [8, 10]. In this paper, the extending 

properties include the CS, max CS, min CS, max-min CS and (strongly) FI-extending 

ones. An extending module means a module having an extending property as 

mentioned, not just CS. We refer readers to a beautiful monograph written by Tercan A. 

and Yücel C.C.[15] that comprehensively presents extending properties, related 

concepts and generalizations. We introduce the condition (III) on modules (in which 

each submodule has a unique closure) to prove a correspondence theorem between 

closed submodules of a module M and closed right ideals of its endomorphism ring S. 

The extending properties are mutually transferred from M to S and vice versa. In 

addition, we prove a theorem in which M and S share Baer and Rickart properties. 

The right-left symmetry of the Goldie and CS conditions in the endomorphism ring 

S is comprehensively investigated with more general results in comparison with those of 

D.V. Thuat et al. [12, 13]. Some examples are discussed in the end of this paper to draw a 

clear picture about the meaning of our work.  

2. On the fully invariant submodules with CS conditions 

In this part, we introduce some properties of fully invarian submodules and apply 

to some class of modules. 

The first one, we identify three conditions as follows: 

 (𝐶1) Every submodule is essential in a direct summand.  

It is equivalent to say that every closed submodule is a direct summand. 

 (𝐶2)Every submodule that is isomorphic to a direct summmand is itself a direct 

summand. 

 (𝐶3)Direct sum of two direct summands with zero intersection is a direct 

summand. 

 Right R-module M is called CS module it satifies  (𝐶1) condition. 

 A module is called continuous if it satifies both the  (𝐶1) and  (𝐶2) conditions. 

 A module is called quasi- continuous if it satifies both the  (𝐶1) and  (𝐶3)  

conditions.  
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A ring R is called CS ring (respectively continuous, quasi-continuous) if the 

module  𝑅𝑅  has the corresponding property.  

Let A,B be submodules of M. We say that B is a complement of A on which B is 

maximal with respect to  𝐴 ∩ 𝐵 = 0. We have  N ⊆∗ 𝑀 if and only if 0 is a complement of N.  

It is easy to see that an indecomposable module is a (𝐶3) module.  

M is a CS module if and only if any it’s direct summand is a uniform module  

(that is 𝑋 ∩ 𝑌 = 0 for all nonzero submodules X,Y of M.  

M is (𝐶2)  module if and only if monomorphisms in end(M) are isomorphisms.  

ℤ− module ℤ2 and ℤ8  are having (𝐶1), (𝐶2), (𝐶3)  conditions, but their direct sum  

𝑁 = ℤ2⨁ℤ8   is not a (𝐶1) module.  

In fact, let 𝑆 = ℤ2 ⨁ 0,  𝐾 = ℤ(1 + 2ℤ, 2 + 8ℤ). We can see that K is contained in 

only two direct summands ℤ2 ⨁ 0 and K = ℤ (1+2 ℤ,2+8 ℤ) and is essential in neither. 

Moreover N is not (𝐶2)  because the 0 ⊕ ℤ (4 +8 ℤ) is not a summand but isomorphic to 

the summand ℤ2⊕0. Hence a direct sum of modules satifying (𝐶1), (𝐶2)  conditions are 

not inherit the same property.  

We have known that module ℤℤ,  is (𝐶1), (𝐶3)  but not (𝐶2).  

Now, we let F be a field and 𝑅 = [
𝐹 𝑉
0 𝐹

], where V = F⊕F. We have 𝑒𝑅 = [
𝐹 𝑉
0 0

], 

is (𝐶2)  but not (𝐶1), where 𝑒 = [
1 0
0 0

].  It is eR indecomposable and not uniform. 

To prove (𝐶1)  does not implies (𝐶2)  we take 𝑅 = [
𝐹 𝐹
0 𝐹

],  where F is a field. 

 We also known that (𝐶2)  condition implies the (𝐶3) condition. 

Lemma 1 Let B be a complement of submodule A in M. The following hold:  

(1) A⊕B 
* M.  

(2) A ⊕B/B 
*  M/B.  

Proof. (1) Any nonzero submodule X of M, we need to show that (A ⊕ B) ∩ X ≠ 0. It is 

clear in the case of X ⊆  B.  Otherwise the maximality of B showing that (A ⊕ B) ∩ X ≠ 0. 

And hence we have 0 ≠ a = b + x where a ∈ A, b ∈ B, x ∈ X.  

It is showing that  0 ≠ x ∈ (A ⊕ B) ∩ X since  A ∩ B = 0.  

(2) Take any nonzero submodule Y/B of M/B. It means that Y is a submodule of M 

and Y=B.Suppose that Y/B∩(A⊕B)/B = 0. Since 𝑌 ≠ B, Y ∩ A ≠ 0.  There is nonzero 

element  𝑎 ∈ 𝑌 ∩ A. Then  𝑎 + 𝐵 ∈
𝑌

𝐵
∩

A⊕B

B
= 0.  It implies a ∈ B. But 0 = a ∈ B ∩A =0. 

This is a contradiction. □  

We call a submodule N of M is a close submodule if it has no proper essential 

extensions in M.  

Proposition 1. Let X be an invariant submodule of  𝑀 = 𝑀1 ⊕ 𝑀2,  then  

 𝑋 = (𝑋 ∩ 𝑀1)⨁(𝑋 ∩ 𝑀2) where (𝑋 ∩ 𝑀𝑖) is an invariant submodule of 𝑀𝑖. 

Lemma 2. Let M be a right R-module. The following are clear:  

(i) Let 𝑀𝑖 be semisimple fully invariant submodules of M  for all i ∈ I. Then  ⨁
𝑖∈𝐼

𝑀𝑖  

and ∩
𝑖∈𝐼

𝑀𝑖  are semisimple fully invariant submodules of M.  
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(ii) If𝑀 = ⨁
𝑖∈𝐼

𝑀𝑖  and X is a semisimple fully invariant submodule of M, then 

𝑋 = ⨁
𝑖∈𝐼

𝜋𝑖 (𝑋) = ⨁
𝑖∈𝐼

(𝑀𝑖 ∩ 𝑋)  where 𝜋𝑖 is the ith canonical projection homomorphism of M. 

(iii)  Let A, B be submodules of M. If A is a semisimple fully invariant of B, where 

B is a semisimple fully invariant of M then A must be semisimple fully invariant in M.  

Lemma 3. M is a (strongly) FI−extending module if and only if every (semisimple) 

fully invariant submodule of M has a complement which is a direct summand of M.  

Proof. Let X be a fully invariant submodule and essential in a direct summand of 

M. There exists an idempotent 𝑒 ∈ 𝐸𝑛𝑑(𝑀𝑅)  𝑠uch that X is essential in eM. And then (1 

− e)M is the desired complement.  

Conversely, let eM be a complement of X, where idempotent 𝑒 ∈ 𝐸𝑛𝑑(𝑀𝑅).  Take 

any x ∈ X. Then x = ex+ (1−e)x. Since X is a fully invariant submodule of M, ex ∈ X ∩ 

eM = 0. Thus that 𝑋 ≤ (1 − 𝑒)𝑀, and so X is essential in (1 − e)M. □ 

Lemma 4. Let M be a right R-module such that every semisimple fully invariant 

submodule of M is essential in a direct summand of M. Let X be a fully invariant 

submodule of M with essential socle. Then X is FI-extending.  

Proof. Let Y be a semisimple fully invariant submodule of X. By Lemma 2, Y is 

semisimple fully invariant in M. Hence, there is a direct summand N of M such that Y is 

essential in N. Let π : M → Y be the projection endomorphism. Then Y = π(Y ) ≤ π(X) ∩ D 

= π(X). Hence, Y is essential in π(X) and π(X) is a direct summand of X. Now, we take any 

K be a fully invariant submodule of X. We have Soc(K) is a semisimple fully invariant 

submodule of K. By above proof, there exists a direct summand L of K such that Soc(K) is 

essential in L. We suppose that X = L ⊕ L’  for some submodule L’  of X.  It is clear that 

Soc(K) is essential in K. Hence, K ∩ L’  = 0. Thus, Soc(K) ⊕ L’ ≤ K ⊕ L’, and Soc(K)⊕L' 

is essential in K. It implies that K ⊕ L’ is essential in X. From here, we can deduce what 

must be proven.  

Theorem 2. Let M be a right R-module, satisfying the  possess as follow: 

(I) For submodules X,Y of M, 𝑋 ≤∗ 𝑌  if and only if  𝐼𝑋 ≤∗ 𝐼𝑌; 

(II) For right ideals K, L of  S=End(M), 𝐾 ≤∗ 𝐿 if and only if ), 𝐾𝑀 ≤∗ 𝐿𝑀. 

 Then the following assertions hold.  

(1) If M is CS, then S is right CS.  

(2) If M is (strongly) FI-extending, then S is right (strongly) FI-extending.  

(3) If M is min CS, then S is right min CS.  

(4) If M is a self-generator and max CS (resp. max-min CS), then S is right max CS 

(resp. right max-min CS). 

Proof.  

(1) Let M be a CS module. For any closed right ideal K of S, KM is essential in a 

direct summand e(M) of M, where 𝑒 = 𝑒2 ∈ 𝑆. By Lemma 5, we get 𝐾 ≤∗ 𝐼𝐾𝑀. By (I), 

we get 𝐼𝐾𝑀 ≤∗ 𝐼𝑒(𝑀) = 𝑒𝑆. Since K is closed, we obtain K = eS, a direct summand of S. 

Consequently, S is right CS. 
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(2) Let M be a (strongly) FI-extending module and let K be an ideal of S. Then, KM 

is a fully invariant submodule of M. Since M is a (strongly) FI-extending module, KM is 

essential in a (fully invariant) direct summand of M, namely e(M) for some 𝑒 = 𝑒2 ∈ 𝑆. 

By Lemma 5, we have 𝐾 ≤∗ 𝐼𝐾𝑀  and 𝐼𝐾𝑀 ≤∗ 𝐼𝑒(𝑀) = 𝑒𝑆 by the condition (I). By 

closeness of K, we get K = eS, a (fully invariant) direct summand of S. This shows that S 

is right (strongly) FI-extending.  

(3) Let M be a min CS module. For a minimal closed (or uniform closed) right ideal 

K of S, we have 𝐾 = 𝐼𝐾𝑀. For nonzero submodules U, V of KM, since M is retractable,  

𝐼𝑈  and 𝐼𝑉 are nonzero. It is clear that 𝐼𝑈 and 𝐼𝑉 are contained in 𝐼𝐾𝑀 = K, thus 𝐼𝑈  ∩ 𝐼𝑉 ≠

0. Then, there exists 0 ≠ 𝑠 ∈ 𝐼𝑈  ∩ 𝐼𝑉 , whence, 0 ≠ 𝑠(𝑀) ⊂ (𝑈 ∩ 𝑉). Therefore, KM is 

uniform. Since M is min CS, KM is essential in a direct summand e(M) of M, where 𝑒 =

𝑒2 ∈ 𝑆. We have 𝐾 ≤∗ 𝐼𝐾𝑀, and 𝐼𝐾𝑀 ≤∗ 𝐼𝑒(𝑀) = 𝑒𝑆 by the condition (I). Since K is 

closed, K = eS, a direct summand of S. Consequently, S is right min CS. 

(4) Let M be a max CS module and K be maximal closed right ideal of S with 

𝑙𝑆(𝐾) ≠ 0. If KM is essential in a submodule X of M, then 𝐾 ≤∗ 𝐼𝐾𝑀 =  𝐼𝑋 . Thus, we 

have 𝐾 = 𝐼𝐾𝑀 =  𝐼𝑋  by closeness of K. Since M is a self-generator, we get 𝐾(𝑀) =

𝐼𝑋(𝑀) = 𝑋. This means that KM is a closed submodule and 𝑙𝑆(𝐾𝑀) ≠ 0. Let Y be a 

closed submodule containing KM. Then we observe that 𝐾 = 𝐼𝐾𝑀  ⊂ 𝐼𝑌 and 𝐼𝑌 is a closed 

right ideal by Theorem 1. Thus, K = 𝐼𝑌 by the maximality of K, so KM = 𝐼𝑌(𝑀) ≤∗  𝑌 and 

KM = Y. Consequently, KM is maximal closed. Since M is max CS, KM is a direct 

summand of M, writing KM = e(M) for some 𝑒 = 𝑒2 ∈ 𝑆. Thus, 𝐾 = 𝐼𝐾𝑀 =  𝐼𝑒(𝑀) = 𝑒𝑆, 

and hence S is right max CS.  

The case of max-min CS property is clear. □ 

Theorem 2. Let M be a module with the endomorphism ring S. If M has (I) and 

(II), then S is a Baer (resp. quasi-Baer, right principally quasi-Baer, right Rickart) ring if 

and only if every M−annihilator of any subset (resp. ideal, principal ideal, element) of S 

is a direct summand of M.  

Proof. Let S be a Baer ring, and 𝑋 = 𝑟𝑀(𝐻) be an M−annihilator, for an arbitrary 

subset H ⊂ S. Then we have 𝑟𝑆(𝐻) = 𝑒𝑆  for some idempotent e ∈ S, because of Baerness 

of S. Thus, HeS = 0 implies eM = eS(M) ⊂ 𝑟𝑀(𝐻). For any x ∈ 𝑟𝑀(𝐻) we have HxR = 0 

so 𝐻𝐼𝑥𝑅= 0 and 𝐼𝑥𝑅 ⊂ eS. Because of (I) and (II), M is retractable and 𝐼𝑥𝑅 ≠ 0, hence 

𝑥𝑅⋂𝑒𝑀 ≠ 0. Consequently, eM is essential in 𝑟𝑀(𝐻)  so eM = 𝑟𝑀(𝐻) = X.  

Now, assume that for every H ⊂ S, 𝑟𝑀(𝐻) is a direct summand of M. Then we have 

𝑟𝑀(𝐻) = eM  for some 𝑒 = 𝑒2 ∈ 𝑆, and HeM = HeS(M) = 0 and eS ⊂ 𝑟𝑆(𝐻). For any 

0 ≠ 𝑓 ∈ 𝑟𝑆(𝐻), Hf = 0 so fM ⊂ 𝑟𝑀(𝐻) = eM and 𝐼𝑓𝑀 ⊂ 𝐼𝑒𝑀 . By (I) and (II), we have eS = 

𝐼𝑒𝑀 and 𝑓𝑆 ≤∗  𝐼𝑓𝑀, so 𝑓𝑆 ∩ 𝑒𝑆 ≠ 0. This implies 𝑒𝑆 ≤∗ 𝑟𝑆(𝐻) so eS = 𝑟𝑆(𝐻). As a 

consequence, S is a Baer ring. Replacing H by an arbitrary ideal (principal ideal, element) 

of S, we prove similarly for the other cases of Baer and Rickart conditions.  
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D.V. Huynh et al. [2, 3] investigated the symmetry of the Goldie and CS conditions 

on a whole prime ring and on one-sided ideals of a prime ring. As a generalization, D.V. 

Thuat et al. [12] studied the symmetry of Goldie and CS conditions on endomorphism 

rings of finitely generated, quasi-projective self-generators. In this section, we modify the 

assumptions in [12] to obtain more general results. Indeed, we will remove the 

assumption of being finitely generated and quasi-projective, even self-generator. The 

following useful lemma is a combination of [12, Lemma 2.1] and [14, Lemma 3.2].  

Lemma 5. The following statements hold for module M. 

(1) M satisfies the ACC on M−annihilators if and only if S satisfies the ACC on 

right annihilators.  

(2) If M possesses (I) and (II), then u-dim(MR) = n if and only if u-dim(SS) = n, 

where n is a non-negative integer. Thus, M is Goldie if and only if S is right Goldie.  

According to [11, Theorem 2.4 and Theorem 2.9], if M is a prime (semiprime) 

modules, then S is a prime (semiprime) ring. Conversely, if M is a self-generator and S is 

a prime ring, then M is a prime module. In the following lemma, we only need 

retractability to convert primeness on S to M.  

Lemma 6. A retractable module M is prime if and only if S is a prime ring.  

Proof. Let S be a prime ring and U, a fully invariant nonzero submodule of M. 

Then, 𝐼𝑈 is a nonzero ideal of S because of retractability of M. We have 0 ≠ 𝐼𝑈(𝑀) ≤ 𝑈. 

For any f ∈ S, if f(U) = 0 then 𝑓𝐼𝑈(𝑀) = 𝑓𝑆𝐼𝑈(𝑀) = 0 and hence 𝑓𝑆𝐼𝑈 = 0. Since S is a 

prime ring, the equality fS = 0 must be hold. This means f = 0. Thus, the zero is a prime 

submodule of M, so M is a prime module. ˆ  

Theorem 3. Let M possess the conditions (I), (II) and (III). Then the following 

statements are equivalent for some integer n ≥ 2.  

(1) M is prime, Goldie and CS with u-dim(𝑀𝑅) = n;  

(2) S is prime, right Goldie and right CS with u-dim(𝑆𝑆) = n; 

 (3) S is prime, left Goldie and left CS with (𝑢 − 𝑑𝑖𝑚(𝑆𝑆) = 𝑛  

Proof. The right-left symmetry of the Goldie and CS conditions of S in (2) ⇔ (3) 

follows from [2, Theorem 1].  

(1)⇔ (2) Firstly, by Lemma 6, M is a prime module if and only if S is a prime ring. 

By Lemma 5, M is Goldie with u-dim(𝑆𝑆) = n if and only if S is right Goldie with u-

dim(𝑆𝑆) = n. M is a CS module if and only if S is a right CS ring. The proof is completed. 

Proposition 2. Let M possess the conditions (I) and (II). If M is a semiprime, 

Goldie, CS module, then S is a semiprime, right Goldie, right CS ring. Moreover, we 

have decomposition for some integer k ≥ 0 : 

▪ 𝑀 = ⨁𝑖=1
𝑘 𝑀𝑖, where each 𝑀𝑖 is a prime module, and Hom(𝑀𝑖 , 𝑀𝑗 ) = 0 whenever  

𝑖 ≠ 𝑗, 

▪  𝑆 = ⨁𝑖=1
𝑘 𝑆𝑖, where each 𝑆𝑖 = Hom(M, Mi) 𝑆𝑖   ≅  End(𝑀𝑖) is a prime ring.  
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Proof. It is clear that S is semiprime by [11, Theorem 2.9]. Since M is a Goldie, CS 

module, S is a right Goldie, right CS ring by Theorem 2 and Lemma 7. Thus, S is a direct 

sum of uniform right ideals, 𝑆 = ⨁𝑖=1
𝑘 𝑒𝑖𝑆, where 𝑒𝑖 = 𝑒𝑖𝑆. We re-arrange the terms to get 

S = [𝑒1𝑆]⊕...⊕[ 𝑒𝑘𝑆], where each [𝑒𝑖𝑆] is a direct sum of uniform right ideals of the 

family {𝑒𝑖𝑆}
𝑛

𝑖 = 1
  that are sub-isomorphic to each other, and hence 

𝐻𝑜𝑚𝑆( [𝑒𝑖𝑆], [𝑒𝑗𝑆]) = 0  whenever 𝑖 ≠ 𝑗 for i, j ∈ {1, ..., k}. We observe that every 𝑆𝑖 =

[𝑒𝑖𝑆] is an ideal of S and is itself a prime ring. We put 𝑀𝑖 = 𝑆𝑖(𝑀) for i = 1, ..., k. Then, 

it is clear that 𝑀 = ⨁𝑖=1
𝑘 𝑀𝑖 and 𝐻𝑜𝑚(𝑀𝑖 , 𝑀𝑗) = 0 whenever 𝑖 ≠ 𝑗 for i, j ∈ {1, ..., k}. 

We see that 𝑆𝑖 ≅ 𝐸𝑛𝑑(𝑀𝑖) so 𝑀𝑖 is prime, i ∈ {1, ..., k}. The proof is now completed.  

Example 1. Let F be a field with only two elements and R be a F−algebra having 

basis {e1, e2, e3, n1, n2, n3, n4} with the following multiplication table 

 

 

 

 

 

 

 It is easy to see that R is an associative ring with identity 1 = e1 + e2+ e3. The 

sum of uniform components n1R⨁n2R⨁n3R⨁n4R is esential in RR and R has a 

decomposition R = e1R⨁e2R⨁e3R. Thus, RR is of finite dimension. However, R is not 

right max CS. In fact, e1R⨁n1R is a maximal closed right ideal (whose left annihilator is 

Re3 ≠ 0) but e1R⨁n1R is not a direct summand. R is also not right min CS, since n1R is 

a minimal closed right ideal but not a direct summand. 

The module e1R is not nonsingular because rR(n3) = Span{e1, e2, e3, n1, n2, n3, n4}  is 

essential in RR. Moreover, e1R is not a self-generator. In fact, for the simple module 

n3R ≤ e1R, if f ∈ HomR(e1R, n3R), f(e1) = n3,  then f(e1e1) = f(e1)e1 = n3e1 = 0. 

This implies that HomR(e1R, n3R) = 0  so e1R is not retractable, and hence not a self-

generator. It is easy to verify that e1R doesn’t satisfy the condition (I). However, e1R 

possesses (III) fortunately.  

Example 2. [8, Example 3.3] shows that the endomorphism ring of a nonsingular 

(even projective) CS module may not be right CS. According to [8, Example 3.2], it is 

possible for a nonsingular (not CS, not retractable) module to have a right CS 

endomorphism ring. These examples implies that retractability (in particular, the 

conditions (I) and (II)) in Theorem 2 and Theorem 3 cannot be dropped). This can be 

generalized for our results on max CS and min CS modules in this paper. 

 𝑒1 𝑒2 𝑒3 𝑛1 𝑛2 𝑛3 𝑛4 

𝑒1 𝑒1 0 0 0 0 𝑛3 0 

𝑒2 0 𝑒2 0 𝑛1 0 0 𝑛4 

𝑒3 0 0 𝑒3 0 𝑛2 0 0 

𝑛1 𝑛1 0 0 0 0 0 0 

𝑛2 𝑛2 0 0 0 0 0 0 

𝑛3 0 0 𝑛3 0 0 0 0 

𝑛4 0 0 𝑛4 0 0 0 0 
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3. Conclusion 

Some poperties of fully invariant submodules with CS conditions have founded 

in this paper.  Furthermore, the right-left symmetry of Goldie, CS and max-min CS 

conditions on the endomorphism rings of prime and semiprime modules have been 

investigated. Some examples are discussed to guarantee that our main results make 

sense. There are still many open things that need further research which we want to 

leave to the readers. 
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