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Abstract: In this paper, we prove the existence of admissible inertial manifolds for the
nonautonomous thermoelastic plate systems

u,—pAO+ Au = f(t,u)
0. +nA40+ puAu, =0
when the partial differential operator Ais positive definite and self-adjoint with a discrete

spectrum and the nonlinear term f satisfies ¢ — Lipschitz condition.
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1. Introduction

One of effective approaches to the study of long - time behavior of infinite dimensional
dynamical systems is based on the concept of inertial manifolds which was introduced by C.
Foias, G. Sell and R. Temam (see [4] and the references therein). These inertial manifolds are
finite dimensional Lipschitz ones, attract trajectories at exponential rate. This enables us to
reduce the study of infinite dimensional systems to a class of induced finite dimensional
ordinary differential equations.

In this paper, on the real separable Hilbert space H, we study the existence of
admissible inertial manifolds of the nonautonomous thermoelastic plate systems:

u, —puAQ+ Au = f(t,u) (1.1
{‘9[ +17A40 + uAu, =0
with initial data %(0) =u,, u,(0) =u,, 0(0) = 6.
Here, 1¢,77 are positive constants, A is a positive definite, self-adjoint operator with a
discrete spectrum; i.e., there exists the orthonormal basis {ek} € H such that
Ae, = Ae,, 0< A <, ..., cach with finite multiplicity and 1M A = .

Futhermore, / bea ¢ - Lipschitz function which is defined as in Definition 2.7.

2. Admissible inertial manifolds

2.1. The fundamental concepts of function spaces and admissibility

Now, we first recall some notions on function spaces and refer to [8] for concrete
applications. Denote by 3 the Borel algebra and by 4 the Lebesgue measure on R. The
space L;(R) of real-valued locally integrable functions on R (modulo A - nullfunctions)
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becomes a Fréchet space for the seminorms p,(f) = L |/ ()| dt, whereJ, =[n,n+1] for

each n € Z [8].
Definition 2.1. A vector space £ of real-valued Borel-measurable functions on R
(modulo A - nullfunctions) is called a Banach function space (over (R, B, 1)) if

AP HCN (E,-

E)is a Banach space,

and if @ € E, ¥ is a real-valued Borel-measurable function such that @() [<|w ()| (A -a.e.)

then ¥ € £ and ”‘//”E

ii) the characteristic functions X4 belongs to E for all 4 € B of finite measure and

>0,
E

<oo,inf] ..,

Suplll(z,nl
telR

i) E = Ly (R).
Definition 2.2. Let £ be a Banach function space and X be a Banach space endowed

with the norm ””
We set ¢:=¢(R, X ) = {h R>X ‘ his strongly measurable and ||h()|| eE } endowed
=1HRON

One can easily see that £ is a Banach space. We call it the Banach space corresponding

with the norm |

to the Banach function space E . We now recall the notion of admissibility [5, 6].
Definition 2.3. The Banach function space E is called admissible if it satisfies
i) there is a constant M >1 such that for every compact interval [a, b] € R, we have

IR P o
Hlab
ii) for @ € E the function
Ao = p@)dr (1.2)
belongs to £,
iii) the space E is T." -invariant and 77 -invariant where 7. and 7 are defined,
fort € R, by
Fot) = pt—1)forteR (1.3)
T; o(t) = pt+7)forteR (1.4)

Moreover, there are constants M, and M, such that

]’;+

<M, and ”T;”SM2 forall z e R.

We next define the associate spaces of admissible Banach function spaces on R as
follows.
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Definition 2.4. Let £ be an admissible Banach function space and denote by S(E) the
unit sphere in £ . Recall that

L = {g ‘R—> R|g is measurable and IR|g(t)|dt < oo}

Then, we consider the set E' of all measurable real-valued functions ¥ on R such that

pyel, [Jpowo)di<k forall peSE)

where k depends only on ¥ . Then, E’ is a normed space with the norm given by (see [8]):
vl =sup{[ @w @ di:pesE)] forall y £

We call E’ the associate space of E .
Remark 2.5. Let £ be an admissible Banach function space and E' be its associate
space. Then, from [8. Chapter 2] we also have that the following “Holder's inequality’ holds

J oo @ld <|el,lvl, forall pek, y ek (15)

Morever, throughout this paper we need the following assumption
Assumption 1. The Banach function space E and its associate space E' are admissible
spaces. Futhermore, for @ be a positive function belonging to E and any fixed v > Q the

function h,(*) defined by h,(1) 3:||e_vll_'|¢(‘)|| o Jor t € Rbelongs to E.
Remark 2.6. In the concept of admissible spaces we can replace whole line R by an
interval (0,7, ].

Definition 2.7. (@ -Lipschitz function). Let E be an admissible Banach function
space on Rand @ be a positive function belonging to E . Then, a function [ RxH->H is

said to be @ -Lipschitz if f satisties
i) |f(t.w) < @@)(1+|u) fora.e.t € Rand forall ueH,

i) |£ )~ ftu)| < o0y, — 10, for ae. t € Rand Vi, €H.

2.2. Abstract thermoelastic problem

First, by putting

Au 0 -1 0 0
U=lu |, A=A4A|1 0 -u|=4-G, Ft,U)=| f(t,u) |
0 0 u n 0

We can rewrite Equation (1.1) in the form

1.6
‘2—7+AU:J~“@,U), (21, (16)

with initial data U(¢,) =U,.
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3 2 2
The characteristic polynomial £ (2) of G has the form X(2)=2"—nz"+ (1 s )Z —1

One can see that the equation  ¥(z) =0 has the simple root Z; and two other roots are

complex Z, = z; such that

12
0<z<n, z,+z;,=n-2z, Zz_Z3Zi'(ﬂ_(77_Zl)z)
2
1 1+ 4’
—<p = ,zu < p, <o,
if 3 n

here A1, P, are constants.

Moreover, there exists positive constants > €, depending on £1> £ and Iy such that

for any 7727, > 0 we have

In order to diagonalize the matrix operator, we introduce new variables
B ,u@—(l — 2,2, )Au + (22 + z, )ut
e (5 -2)(5-2)
,uH—(l — 2,2, )Au + (z1 +z, )u[
(z,-2)(z,—2)

10 —(1-zz,) Au+(z,+z, )u,

Yo =

y =
’ (23 _Zl)(ZS _Zz)
then
Au=y +y,+y,
u, = _(Z]yl +2,), +Z3y3)
_ 1 2 2 2
9——;(Au+z1 Y +25), +Z3y3).
Introducing variables w, by formulas Ji () = w,(zt) , we get
(1.7)
%4‘14%‘1 :Klf(t,A_l(wl+W2+w3))
%Jrisz = Kzf(t,A_] (w1 +w, + w3))
dt  z
% iAw3 = K2f<t,A_l(w1 +w, + w3))
r oz

Zl-i-Z3

z (Z2 —zl)(z2 —23)

K, =

K = s
where 1 Zl (Zl _Zz)(Zl _Z3)
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and
z, +z —
1 2 _
=K,.

K, =
2 (Zs —Z )(23 _Zz)
H x Hx H(where H is complexification of M),

Thus, in the space H =
(1.8)

W= (Wv Wa» Ws) satisfies the equation
D AW =), W) =W, =U,

where
1 0 0 K
A=A4|0 2 0|, Few)=|K, | f(n.47"(w+w,+w)).
Z1 K3
0 0 =
Z

From now, without any misunderstanding, we denote the norm on H by || and let
(1.9)

K* = K12 +|K2|2 ""|I<3|2 = I<12 +2|K2|2 we have
), [F@.W)~F(@.W,)| <3Kp(0)|W, =17,

[F(e, )| < BK () (147
In the case of infinite-dimensional phase spaces, instead of (1.8), we consider the

(1.10)

integral equation
W)= "W (s)+ [ e TONREW(£)dE forae s,
By a solution of equation (1.10) we mean a strongly measurable function W (-) defined

on an interval J with the values in H that satisfies (1.10) for ¢,s € J. We note that the

solution J¥ to equation (1.10) is called a mild solution of equation (1.8).

2.3. The existence and uniqueness of solution
Now, for every pair of integers N, 20, and N, =0 we introduce the projections
P, 0 0 (1.1D)
p=0 P, 0| Q=I-P

0 0 &

where P is the orthoprojector onto span{e, :k=1,2,....N}for N =1 andF, =0,
Putting

R ) R
A~ =max {ANI 9&2“N2 } A" =min {ﬂ“Nﬁ—l 7ﬂ/’lﬁ\h+l }

1 and a
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Throughout this paper, we assume that A~ < A". Since dimP < oo, and P commutes
with A, then we have the following dichotomy estimates
e P<dMvie R e Qe vVE>0 (1.12)
We now define the Green function as follows.
Gle.r) = {e—“—”A[z —P] for¢ >, (1.13)
—e AP fort <r.
Then G(t,7) maps H into H. Moreover, by dichotomy estimates (1.12) we have
UGt r)[<e ™™ forallt,reR (1.14)

ey SR L7
where =~ 2 V= 2

Now, by Lyapunov - Perron method, we firstly construct the form of the solutions of
equation (1.10) in the following Lemma

Lemma 2.8. For fixed t)€ R let W(t), t <t, be a solution to equation (1.10) such
that W(t) € D(A) for all 1<y and the function Z(t)= |e_y(t“_t)W(t)| Vit <t,, belongs to
(=041
Then, this solution W(t) satisfies
W)= + [ GuF@ W (2)dz, Vi<i, (1.15)

where v, € PH, and G(t,7) is the Green's function defined as in (1.13).

Proof. Put

Y@ =[" Gu.OF@W(r)dr forall 1<y, (1.16)

By the definition of G(t, 7), we have that Y(¢#) e H for ¢ <%,.

Using estimates (1.9) and (1.14), for  <¢,, we obtain
|e—7(fo—t)Y([)| < \/§K'|'t° ‘|e7“‘”g(t,r)‘(p(r)e_y(""” (1+ | W(T) |)dT

< B

Putting V' (¢) = e+ | W (t)| for all 1 <1,.

(1.17)

&Gt Dlp(e) (e + [ (1)) dr.

We have that the function ¥ belongs to E(_.,; and
[*le 6@ lpw @dr <[ eV ()dr
< ||e—a|t—-l¢(.)||E(%m ”V”

Here, we use the Holder's inequality (1.5).

(1.18)

E<-°°-to] )
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Since 1) :||e_alt_‘|(/’(')||5\z%,0]belongs to E(—oo,ro], using the admissibility of E_.iwe
Rl

Ewp)

“(—<,0

obtain that € 7Y () € & i1 and ||e_y(tu_-)Y(')||Emm = ﬁKWL“ (.)”F

It is obvious that Y() satisfies the integral equation

Y(t,) = Y@+ [ e B @ W (0)dr for 1<, (1.19)

On the other hand,
W(t) =e MW (@) + [ e ONF (W ().
Then Y(2,)-W(t,) =e [ Y()-W(t)] € PH and
W(t)=e "™, +Y(t)
=+ [ GO W (0)dr  fort<i,.
The proof is completed.
Lemma 2.9. Define
h @) =|e " o0, (1.20)

E(’wo‘lol

Let [ :RxH—>Hpe @ - Lipschitz such that k = \/§K||ha O, <l

(—=.tg]

Then, there corresponds to each v, € PH one and only one solution W(*) of equation
(1.10) on (=0,t,] satisfying the condition PW(t)) =V, and Z()=e 7 “"W@)|, t<t,
belongs to E_.,) for each t, € R.

Proof. Denote by " the space of all functions ¥ : (—0,¢,] = H which is strongly

—}’(to—')V . |EE .
() (==41" Then, " is a Banach space endowed with the norm

Al

(=np]
For each f, € R and v, € PH we will prove that the linear transformation 7" defined

e
measurable and |

I

by
TWY0) =, + [ Gt OF@ W (e)dr  fort<i, (1.22)
acts from £ into itself and is a contraction.
In fact, for W €E™  we have that |F(t,W (1)) |< \/qu)(t)(l +|W(t)|).
Therefore, putting Y (£):=e "y, + J. N G, 0)F(r,W(r))dr fort<t,,
we derive that
| e—y(m—r)y(t)| < ”V” n \/g Kh, (t)||V|| (1.23)

E —0.40]

for all # <1, where V(1) = O+ (0) ) , and ||v|| =g @™ ||v1||
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Since ¢ ““™ and &,(-) belong to L1, Y(-)e& " and ||Y()||y S||V||+k||V||

E(—%-'o] ’
. . s "
Therefore, the linear transformation 7" acts from £ to £ .

Now, for X,Z €E™" we estimate

e X @ -T2 < [ oG [Fe X (0~ F e 2 e

)
—00

< \/gKJ-tO |e—7(to—f)g(t’ T)|(0(T)e—7([0—7)
Again, using (1.18) we derive
|7 () -720)), < k”X(.) -zQ),.

X(7)- Z(r)| dr.

Hence, since & <1, we obtain that T: £ — E™" is a contraction. Thus, there exists a

unique W() €& such that TW =W . By definition of 7 we have that W(:) is the unique

solution in € of equation (1.10) for # <%,
By Lemma 2.9 we proved the existence and uniqueness of solution to Equation (1.10)

belongs to E™ for 11, Futhermore, by Lemma 2.8 this solution can be written in the
form of (1.15) which is called Lyapunov-Perron equation.

2.4. The existence of admissible inertial manifold

Now, we make precisely the notion of admissible inertial manifolds for solutions to
integral equation (1.10) in the following definition.

Definition 2.10. Let £ be an admissible function space, £ be a Banach space
corresponding to E. An admissible inertial manifold of £ -class for Equation (1.10) is a

collection of Lipschitz surfaces M={M}x in H such that each M, is the graph of a
Lipschitz function ®,:PH—>({-P)H, je
M={U+®U:UecPH} forteR (1.24)
and the following conditions are satisfied:
i) The Lipschitz constants of @, are independent of ¢, i.e. there exists a constant C

independent of ¢ such that
@ W, —®W,|<C|W,—W,| forallzeR and W, W, e PH. (1.25)

ii) There exists Y > 0 such that to each 5 € M(, there corresponds one and only one
solution W (t) to (1.10) on (—00,1] satisfying that W(t,) =W, and the function
V() =e W (@) (1.26)
belongs to E o) for each b € R
iii)y M },er is positively invariant under (1.10), i.e., if a solution W(t), £=$ of
(1.10) satisfies W e Ms, ,then we have that W(¢) € M fort>s.
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iv) M}z exponentially attracts all the solutions to (1.10), i.e., for any solution

W() of (1.10) and any fixed s € R, there is a positive constant H such that
dist,, (W(t),M) < He 7™  fort>s, (1.27)
where 7 is the same constant as the one in (1.26), and disty denotes the Hausdorff

semi-distance generated by the norm in H.
Then, the existence of admissible inertial manifold is state in the following theorem.
Theorem 2.11. Equation (1.10) has an admissible inertial manifold if

k=3K]n, Ol <1 (1.28)
k3KM, (1.29)

—|A k<1
and (l_k)(l_e—a)” l(p”oo tr<l

where By is given by (1.20) and M, is defined in Definition 2.3.
Proof. Firstly, Lemma 2.9 allows us to define a collection of surfaces {M }, by

M, ={V+® V"V <PH|
here @, : PH— (I =P)H 5 defined by

(I)tu (V) = J._t; e_(to—r)A (1 — P)F(T, W(’[))dz' = (I — P)W(to ), (1 30)

where W () is the unique solution in £ of equation (1.10) satisfying that £W (L)=V

(note that the existence and uniqueness of ¥ is proved in Lemma 2.9).

Then, D, is Lipschitz continuous with Lipschitz constant independent of . Indeed,
for ¥, and v, belonging to PH we have
@, 7)-@, %) <[ [N = P)|[F(s. ()~ F(s.W,(s))| ds
= [ G20, 9)||F (5.1, (5)) = F (5,7, (s))| s

<VBK[" |G (1. 9)lp(s) e (W) =W, ()| ds
<k, -W,0)], .

(1.31)

We now estimate! W1() =W, () |7. Since W,() is the unique solution in EM of

equation (1.10) on (—o0,1,] satisfying PW(t,) =V, withi= 1,2, respectively, we have that

|7 @™ (W, () -, (1)) =

) ( AW )+ J'l G(t,0)[F(z, W, (7)) —F(z,W,(7))ld T)

< =Vy|+k|W,()-W, ()|, forallz<t,.
Hence, we obtain | W) =W, () L<|V, =Wa|+ kI WO =W, .
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1
Therefore, since £ <1we get LACKAQIR= 1_k|V1 =7,

b

k
o . . . |P,T)-D <—1V -
Substituting this inequality to (1.31) we obtain | fo ) 0 £ )| 1-k |Vl €

independent

is Lipschitz continuous with the Lipschitz constant C := "

yielding that @,
of Z,. We thus obtain the property (i) in Definition 2.10 of the Admissible Inertial Manifold.
Secondly, The property (ii) of the Admissible Inertial Manifold is obvious.
Thirdly, We now prove the property (iii) of admissible inertial manifold.
To do this, let W (:) be a solution to equation (1.10) satisfying W(s) =W, e M, i.e.,
W(s)=PW(s)+® (PW(s))
Then, we fix an arbitrary number £, €[s,00) and define a function U on (—0,{,] by
Wit ift e[s,t,],
Uty = () | [,
V(t) ift € (—o0,s]
Where ¥ is the unique solution in £ of equation (1.10) satisfying V' (s) =W (s) e M, .
Then, using equation (1.10) and (1.30) we obtain

Uty = (P (s)+®,(PW () + [ ¢ “*F(z,U(x))dz (1.32)

— e—(t—s)A (PW(S)) + J‘t e—(t—r)A(] — P)F(T,U(T))d’[

—00

+f e OAPR(,U(r)dr  fors<t<t,

Obviously, equation (1.32) also remains true for f € (—0,5] .
Now, in equation (1.32) setting f =1, and applying the projection P we obtain

PU(t,) =e "™ (PW(s))+ “ g4 pR 7,U(r))dr fors <t,.
0 s 0

It follows from the above equation that

PW(s) _ A PW(1,))— foe(to—s)Ae—(tO—r)APF £ U(0)dr (1.33)
0 s

_ o (A ( PW(fo)) _ J‘[O e APF(r,U(7))dr  fors <t

Substituting this form of PU () to equation (1.32) we obtain

U@ = " PW(,) + " G.OF@U)dr  fort <. (1.34)

Therefore, W(t,) =U(t,) = PW(t,) +®, (PW(t,)) forall fh =S
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Finally, We prove the property (iv) of Definition 2.10. To do this, we will prove that
for any solution W() to equation (1.10) and any s € R there is a solution W”() of such
that W*(t)e M for t>s and

2 M o) (1.35)
|W(t) -w (t)| < - e” for all t > s, and some constant 7,
where
kN.
Le— P gp g k<l
(1-k)1-€e™) *
is given as in (1.29). The solution W™ (-) is called an induced trajectory.
We will find the induced trajectory in the form W (t) =W (¢)+U(¢) with
||U||X , =esssupe’'™ U(t)| < . (1.36)

Substituting #* () into (2.10) we obtain that W () is a solution to (1.10) for ¢ >s if
and only if U(") is a solution to the equation
Ut)y=e""U(s)+ L TR (EW (S +U(E) —F(&, W (§)]dS.

For the sake of simplicity in the presentation, we put

F@,U)=F@t,W+U)-F@W)

(1.37)

and set

L’ = {V :[s,0) = H| V' is strongly measurable and esssupe’™

tzs

V(t)| <0} endowed with

the norm ””s+ defined as in (1.36).

Then, by the same way as in Lemma 2.8, we can prove that a function U(-)e L)" is a

solution to (1.37) if and only if it satisfies

U@ =X, + [ G(t.0)F(z.U(e)dr for 12 s and some X, € (/ ~ P)H. (1.38)

Here, the value Xy €I =P)H i chosen such that W~ ) =W(s)+U(s)eM e,
(I =P)W(s)=U(s)) = @, (P(W(s)+U(s))).

From (1.38) it follows that
Us) =X, ~ [ ¢ PF(r,U())d. (1.39)

Hence
PW(s)+U(s))=PW(s)— j.jo e “TOAPE (¢, U(7))dr,
and therefore
® _(s-1)A (140)
X, =(I-P)U(s)=—(I - P)W(s)+ D, (PW(S) o R U(r))dr).
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Substituting this form of X into (1.38) we obtain

U@y =e* [—(1 —PW (s)+®, (PW(S)— L”e—u-m PE(r.U(1) dr)} (1.41)

+ J';g(t,z-)F(z',U(r))dr fort > s.

What we have to do now to prove the existence of W satisfying (1.35) is to prove that
equation (1.41) has a solution U(-) € L" .

To do this we will prove that the linear transformation 7" defined by

(TX)(t)=e 94 [—(1 —PW (s)+®, (PW(s) — f e_(“—’)APlF(r,X(r))dr)}

+[ 0t F @, X(@)dr  fortzs,

acts from L™ into itself and is a contraction.

Indeed, for X(-)eL.", we have that | F (£, X(?))[< \/qu)(t) | X(0)|, therefore, by

‘c

putting
gq(X)=—(1-PW(s)+®, (PW(s) - j“ e “TOAPE (1, X(r))df),

we can estimate

&) (1.42)

(IX)t) <™

M|+ 3K [ e G0 (e

<[ e g0+ V3K f|ef<f-f>g(z, olp()dz] X ()

Using Lipschitz property of @, and for #>s we now estimate the first term in the

X(r)|dr

5,4

right-hand side of the last formula as follows.
& TRG(X)| <|er Ve A (—(1 = PYW () + @ (P (s)))] +
+|e e N (G(X) + (T = P (5) = D (PW(5)))
< "N (|((1 = PYW (5) + @ (PW (s)))| +

+|(@(X) + (I = PYW (s) —®,(PW (5)))|)
<77 +[(g(X) + (I = PYW (5) = ® (PW (5)))|

<7+ ‘cps (PW(S) - j °’ e‘(s")APF(r,X(r))dr) —®_(PW(s))

k
<p+—
T

BK

1-k

Sn{ kBKM,

(A-k)A-e™)

Jme_(‘_”APF(T,X(T))dr

s

<n+ Lw e‘“”‘”gp(z‘)|e7(’_S’X(T)| dr

s+

; Al(prw}llﬂ((-)
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Substituting these estimates to (1.42) we obtain 7X € L and

| kS3KM (1.43)
TXT, <+ Ll o - ) A, +k}||X()II

Therefore, the linear transformation 7" acts from L7 toL",

Now, using the fact that |F(t,U1) —F(Z,U2)| =

S,+ .
and for X,Z € L} we now estimate

7(t=s k
|7 (TX (1) - TZ(2))| < —

[Te 0 P(F (2, X (2) - F(r,2(x))dr

+ [ G| F (e, X (0) - F(r.2(2) | d

g kff [“e @ X (0) - 2] dr

+BK[ | g )p(r)e
3 { IN3KM,
e

Sl + k}”X(.) ~2()|,, forallz>s.

X(r)-Z(r)|dr

B (1-k)(1-e
Therefore, M—KM” 1gz;»” +k
A-k)(1-
Hence, if N_—KA/[”Algo” +k <1then we obtain that 7:L" =L is a
(1-k)A-e*) "

contraction. Thus, there exists a unique U(-) € L) suchthat 7U =U .

By the definition of 7 we have that U(-) is the unique solution in L' of equation
(1.41) fort > s . Also, using (1.43) we have

o, <
Furthermore, by determination of U we obtain the existence of the solution

77

W* =W +U to equation (1.10) such that W (t)eM for t>5, and W* satisfies the

* 77 —y(t=s)
— = <" ! >
inequality (1.35) yielding that [ o-wo|=uol< —.¢ forall 7.

__n
Putting H= 1— L it follows from the latter inequality that

dist,, (W (1), M) < He 7™ forall¢>s.

Therefore, M} exponentially attracts every solution W(:) of integral equation
(1.10).
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