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Abstract: In this paper  we consider a nonlocal p -Laplace parabolic equation depending 
on the pL  norm of the gradient with nonlinearity of arbitrary order. First, we prove the 
existence and uniqueness of weak solutions by combining the compactness and monotone 
methods and the weak convergence techniques in Orlicz spaces. Then, we prove the existence 
and regularity of a global attractor for the associated semigroup. The main novelty of our 
results is that no restriction on the upper growth of the nonlinearity is imposed. 
Keywords: Nonlocal p -Laplace parabolic equation; nonlinearity of arbitrary order,  
weak solution, global attractor, compactness method, monotone method, weak 
convergence techniques. 
1. Introduction 

Let    be a bounded domain in N  with Lipschitz boundary   and let 2p   be 
fixed. We consider the following quasilinear parabolic equation with nonlocal diffusion term ( )( )2

( )

0

div | | ( ) ( ), , 0,
( , ) 0, , 0,
( ,0) ( ), ,

p
p p

t Lu a u u u f u g x x t
u x t x t
u x u x x

−


 −    + =   =   = 

‖ ‖                  (1.1) 
 

where the diffusion coefficient a , the nonlinearity f , and the external force g  
satisfy the following conditions:  

(H1) ( , )a C +  and there are two positive constants m  and M  such that  
0 ( ) , .m a s M s                                                 (1.2) 

Moreover, we assume that 
1( )p ps a s s −  is nondecreasing.                                    (1.3) 

 
(H2) :f →   is a continuously differentiable function satisfying 

2
1( ) ,f u u u c − −                            (1.4)                                                        

( ) ,f u  −  (1.5)                                                                                              
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where 1, ,c  are positive constants, and if 2p =  then we assume furthermore that 
10 m    with 1 0   being the first eigenvalue of the Laplace operator −  in   

associated with the homogeneous Dirichlet boundary condition. 
(H3)   2 ( )g L  . 
Equation (1.1) is nonlocal due to the structure of the diffusion coefficient which 

depends upon the pL -norm of the gradient. In the last decade, a lot of attention has been 
devoted to nonlocal parabolic problems. One of the justifications of such models lies in the 
fact that in reality the measurements are not made pointwise but through some local 
average. Some interesting features of nonlocal parabolic equations and systems and more 
motivation are described in [1] [6] [7] [8] [9] [22] [27] and references therein. 

On the other hand, the existence and long-time behavior of solutions in terms of the 
existence of global attractors  to quasilinear parabolic equations involving p -Laplacian 
type operators have been extensively studied in recent years. A typical example of 
nonlinearity is the one satisfying a growth and dissipative condition of polynomial type 

1 0 2 0| | ( ) | | ,p pc u c f u u c u c−   +  
, ( )f u  −  

for some 2p  , see e.g. [2, 3, 5, 10, 11, 14, 17, 24, 26]. We notice that this class  of 
nonlinearities requires some restrictions on the upper growth, and in particular, the 
exponential nonlinearity, for example, ( ) uf u e= , do not hold. 

For nonlocal p -Laplace parabolic equations, in some recent works [8] [9], Caraballo 
et. al. considered the following equation ( )2( ( ))div | | ( ) ( ),p

tu a l u u u f u g x−−   + =  
where 2: ( )a L  →  is a continuous linear functional, ( )f u  is sublinear or is growth 

and dissipative of polynomial type. They proved the existence of global attractors in both cases 
with and without uniqueness of solutions, and these results are in some sense as extensions of 
previous ones for the following nonlocal reaction-diffusion equation in [4] [6] [20] [22]. 

( ( )) ( ) ( ).tu a l u u f u g x−  + =  
While in [12, 13], Chipot and Savitska considered the following parabolic equation ( )( )2

( )div | | ( ),p
p p

t Lu a u u u g x−
−    =‖ ‖  

with zero Dirichlet boundary conditions, where 1, ( )qg W −  . They proved the existence, 
uniqueness and long-time behavior of solutions to this problem. This result was extended 
in [25] with the nonlinearity satisfying the dissipative condition of polynomial type. 

In this paper, we extend the results in [4, 12, 13, 25] by adding a nonlinearity of 
arbitrary order. Here we are able to prove the existence and uniqueness  of weak solutions 
and the existence of a global attractor for a very large class of nonlinearities that particular 
covers both sublinear and polynomial type classes and even exponential nonlinearities. The 
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absence of the upper growth condition on f  and the diffusion coefficient determined by a 
global quantity causes a number of difficulties which make the analysis of the problem 
interesting. To overcome these essential difficulties, we exploit the weak convergence 
techniques in Orlicz spaces [17], and combine it with the standard monotone and 
compactness methods. In particular, the results obtained here are extensions of many 
previous results in [16] [24] [26]  for local p -Laplace parabolic equations. 

The paper is organized as follows. In Section 2, we prove the existence and uniqueness 
of global weak solutions to problem (1.1). In Section 3, we show the existence of global 
attractors in various spaces for the continuous semigroup associated to problem (1.1). 
2. Existence and uniqueness of weak solutions 

Let us denote : (0, )T T =   and let ( , )p q  be conjugate, i.e., 1 1 1p q+ = . First, we 
give the definition of weak solutions to problem (1.1). 

Definition 2.1. Let 2
0 ( )u L   be given. A function u  is called a weak solution of 

problem (1.1) on the interval (0, )T  if 1, 2
0(0, ; ( )) ([0, ]; ( ))p pu L T W C T L    , 

1, 1(0, ; ( )) ( ),q q
T

du L T W Ldt
−  +  1

0( ) ( ), (0)Tf u L u u  = , and 
( )2

( )( ) | | ( ) 0,p
p p

t Lu v a u u u v f u v gv dx−
 +     + − = ‖ ‖  

for all test functions 1,
0 ( ) ( )pv W L     and for a.e. (0, )t T . 

As in [12],  under the assumption (H1), one can check that the operator  ( )p
p p-2
L ( ): div a( u )| u| uAu = −   ‖ ‖  

is monotone in 1,
0 ( )pW  , i.e., for all 1,

0, ( )pu v W  , we have 
, 0.Au Av u v − −    (2.1) 

In addition, for each 1,
0 ( )pu W  , we have the following inequality 

1,01 ( ) ( ) .p p
p p
L Wu u  ‖ ‖ ‖ ‖  (2.2) 

In the case 2p  , it follows from the embedding 2( ) ( )pL L    and the inequality 
(2.2) that   

2 1,0

2 2 2
2 2 2

1( ) ( ) ( )| | | | .p p

p p
p p p

L L Wu u u− − −
     ‖ ‖ ‖ ‖ ‖ ‖  

As an application of the Young inequality with  , we obtain 

2 1,0

2
22 1

( ) ( )
( 2) | | .2p

pp
L W

ppu u p
  − −

 
−    +   ‖ ‖ ‖ ‖  

                                                (2.3) 
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Using the Holder inequality, inequality (2.2), the Young inequality and the 
embedding 2( ) ( )pL L   , we have  the following inequality 

1, 20

( 2)
2

( )( )
1

| | ,
( )

p

p q
pp q

q LW
p

gudx u g
q p




−


 + ‖ ‖ ‖ ‖  

(2.4) 

for all 1,
0 ( )pu W   and any 0  . 

Theorem 2.1. Under the assumptions (H1)-(H3), problem (1.1) has a unique global 
weak solution u  satisfying  

2 1,
0([0, ); ( )) (0, ; ( )),p p

locu C L L W       
1, 1 1(0, ; ( )) (0, ; ( )).q q

loc loc
du L W L Ldt

−   +    
Moreover, the mapping 0 ( )u u t  is continuous on 2 ( )L  , that is, the solution 

depends continuously on the initial data. 
Proof. i) Existence. Fix 0T   arbitrarily. Let 1{ }j je =  be a basis of  

1,
0 ( ) ( )pW L   , which is orthornomal in 2 ( )L  . We look for an approximate solution 
( )nu t  of the form 

1
( ) ( )n

n nj j
j

u t t e
=

=   
that solves the following problem ( ) 2

( )

2
0

1

| | ( ) ,

(0) in L ( ) as n .

p
p p

nt k n n n k n k kL
n

nk k
k

u e a u u u e f u e dx ge dx

e u

−
 

=

  +     + =   →  →

 


‖ ‖
 

(2.5) 

Since ( , )a C +  and 1( )f C , the Peano theorem ensures the existence of 
approximate solutions ( )nu t  on an interval [0, ) [0, ]nT T . 

We now establish some a priori estimates for nu . Multiplying the first equation in 
(2.5) by ( )nj t  and summing from 1j =  to n , we obtain  

( )2
2

( ) ( )
1 | | ( ) .2 p

p p
n n n n n nL L

d u a u u dx f u u dx gu dxdt     +   + =  ‖ ‖ ‖ ‖  (2.6)                  
Hence, by (1.2) and (1.4), we have  

2 1, 20
2 2

1( ) ( )( )
1 | | .2 p

p
n n n nL LW

d u m u u c gu dxdt   + −   +‖ ‖ ‖ ‖ ‖ ‖  
Putting the above inequality together with (2.2), (2.3) and (2.4), there exist two 

positive constants 1 2,C C  such that 
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2 1,0
2

1 2( ) ( ) .p
p

n nL W
d u C u Cdt  + ‖ ‖ ‖ ‖  

Integrating from 0  to t , 0 ,nt T   we get  
2 1, 20

2 2
1 0 2( ) ( )( )0( ) ( ) .p

t p
n nL LWu t C u s ds u C T +  +‖ ‖ ‖ ‖ ‖ ‖  

This implies that { }nu   is bounded in 2(0, ; ( ))nL T L   and in 1,
0(0, ; ( ))p p

nL T W  . In 
particular, we see that 2 ( )( )n Lu t ‖ ‖  remains bounded in time. Therefore, we can extend 
the approximate solution to the whole interval [0, ]T .  

On the other hand, for a.e. (0, )t T ,  ( )( )2
( )( ) div ( ) | ( ) | ( )p

p p
n n n nLAu t a u t u t u t−

= −   ‖ ‖  
defines an element of 1, ( )qW −   by  ( ) 2

( )( ), ( ) | ( ) | ( ) ,p
p p

n n n nLAu t v a u t u t u t vdx−
   =    ‖ ‖  

for all 1,
0 ( )pw W  . Using (1.2) and the boundedness of { }nu  in 1,

0(0, ; ( )),p pL T W 
we deduce that { }nAu  is bounded in 1,(0, ; ( ))q qL T W −   since  

2
( )0| div( ( ) | | ), |p

T p p
n n nLa u u u v dt−

−     ‖ ‖  
2

( )| ( ) | | |p
T

p p
n n nLa u u u vdxdt−

=     ‖ ‖  
1| | | |

T
p

nM u v dxdt−
    

1, 1,0 0
/
(0, ; ( )) (0, ; ( ))p pp p

p q
n L T W L T WM u v  ‖ ‖ ‖ ‖  

for any 1,
0(0, ; ( ))p pv L T W  . We now prove that { ( )}nf u  is bounded in 1( )TL  . 

It follows from (1.2), (2.6) and (2.4) that   
( )2 2

2
1( ) ( )

1 ( ) , , , , | | .2
q

n n nL L
d u f u u dx C m p q gdt  +  ‖ ‖ ‖ ‖  

Integrating from 0  to T , we obtain 
2 2 2

2 2
1( ) ( ) ( )

1 1( ) ( ) (0) ( , , , ,| |) .2 2T
q

n n n nL L Lu T f u u dxdt u TC m p q g  +  + ‖ ‖ ‖ ‖ ‖ ‖  
Hence  

2 2
2

0 1( ) ( )
1( ) ( , , , , | |) .2T

q
n n L Lf u u dxdt u TC m p q g   +  ‖ ‖ ‖ ‖                          (2.7) 

Setting ( ) ( ) (0)n n nh u f u f u= − +  with   . By (1.5), it implies that ( ) 0h s s   
for all s . Therefore, we deduce from (2.7) and the boundedness of { }nu  in 

2(0, ; ( ))L T L   that 
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{| | 1} {| | 1}| ( ) | | ( ) | | ( ) |
T T n T nn n n nu uh u dxdt h u u dxdt h u dxdt       +    

| | 1
( ) sup | ( ) | | |

T n n Ts
h u u dxdt h s 

 +   
2( ) | | | (0) | | |

T T Tn n n nf u u dxdt u dxdt f u dxdt  = + +    

| | 1
sup | ( ) | | |Ts

h s


+   
3.C  

This means that { ( )}nh u  is bounded in 1( )TL  , and so is { ( )}nf u . We rewrite the 
first equation of (1.1) in 1, 1(0, ; ( )) ( )q q

TL T W L−  +   as  
2

( )div( ( ) | | ) ( ).p
p p

nt n n n nLu g a u u u f u−
= +    −‖ ‖  (2.8) 

Therefore, { }ntu  is bounded in  
1, 1 1 1, 1(0, ; ( )) ( ) (0, ; ( ) ( ))q q q

TL T W L L T W L− − +    +  .  
Since 1, 2 1, 1

0 ( ) ( ) ( ) ( ) ( ),p qW L L W L −       +  by the Aubin-Lions 
lemma, we see that { }nu  is compact in 2 2(0, ; ( ))L T L  .  Therefore, there is an a.e. 
convergent subsequence in T . Applying a diagonalization procedure and using Lemma 
1.3 in [19, p. 12], we obtain (up to a subsequence) that 

1,
0in (0, ; ( )),p p

nu u L T W   
2 2in (0, ; ( )),nu u L T L→   

1, 1in (0, ; ( )) ( ),q q
nt t Tu u L T W L−  +   

2( ) ( ) in ( ),nu T u T L→   
and 

                 ( ) 2 1,
( )div( | | ) in (0, ; ( )).p

p p q q
n n nLa u u u L T W− −

−    − ‖ ‖  
    (2.9) 

 
We now pass to the limit in the nonlinear term. From (1.5) we see that ( )h   is a 

strictly increasing function. Moreover, using (2.7) we have 
2 2

2
1( ) ( )

1( ( )) ( ) (0) ( , , , ,| |)2T
q

n n n L Lh u t u t dxdt u TC m p q g   +  ‖ ‖ ‖ ‖  

( )2

2 2
2( )

| (0) | 1| | ( ) (0) .2 2 n L
f T u C T +  + + +‖ ‖  

Since nu u→  strongly in 2 2(0, ; ( ))L T L  , then up to a subsequence, we have 
nu u→  a.e. in T . Applying Lemma 6.1 in [16], we obtain that 1( ) ( )Th u L   and for 

all test function 1,
0 0([0, ]; ( ) ( ))pC T W L      , 
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( ) ( )  as .
T Tnh u dxdt h u dxdt n  → →   

Hence, 1( ) ( )Tf u L   and for all 1,
0 0([0, ]; ( ) ( ))pC T W L      , 

( ) ( )  as .
T Tnf u dxdt f u dxdt n  → →   

Now, passing to the limit in (2.8), one has in the distribution sense  
( ) .tu f u g− + =  (2.10) 

It remains to prove that Au = . To do this, integrating  (2.6) from 0  to T  we obtain   
              ( )( )0 | | ( )p

T T

T p p
n n n n nLa u u dxdt gu dxdt f u u dxdt     = −   ‖ ‖  

                                                                  2 2
2 2

( ) ( )(0) ( ) .2 2
n nL Lu u T + −‖ ‖ ‖ ‖  

Since 2 2
2 2

( ) ( )lim ( ) ( )n L Ln u T u T → =‖ ‖ ‖ ‖  and 2 2
2 2

0( ) ( )lim (0)n L Ln u u → =‖ ‖ ‖ ‖ , we deduce 
that  
           ( )( )0lim | | ( )p

T T

T p p
n nLn a u u dxdt gudxdt f u udxdt   →   = −   ‖ ‖  

2 2
2 2

0 ( ) ( )( ) .2 2
L Lu u T + −‖ ‖ ‖ ‖  

(2.11) 

Going back to (2.1), we have   ( ) ( )2 2
( ) ( )| | | | ( ) 0 ( )p p

T
p p p p

n n n nL La u u u a v v v u v dxdt− −
     −     −  ‖ ‖ ‖ ‖  

for all 1,
0(0, ; ( ))p pv L T W  . Thus, taking limit leads to 

                        ( )( )0 0lim | | ,p
T Tp p

n nLn a u u dxdt v dt →   +    ‖ ‖   
                              ( ) 2

( ) | | ( ) 0.p
T

p p
La v v v u v dxdt−

−     −  ‖ ‖  
Putting this with (2.11), we have  

               2 2
2 2

0 ( ) ( )
0

( )( ) ,2 2T T

TL Lu u Tgudxdt f u udxdt v dt 
 − + − +    ‖ ‖ ‖ ‖  

( ) 2
( ) | | ( ) 0.p

T
p p
La v v v u v dxdt−

−     −  ‖ ‖  (2.12) 
We see that 1( ) ( )Tf u L   and u  does not belong to 1,

0 ( ) ( )pW L   . Therefore, 
u  cannot be chosen as a test function in (2.10). We will use some ideas in [17]. Let 

:kB →  be the truncated function defined by  
if s k,

( ) if |s| k,
if s -k.

k

k
B s s

k

= − 
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We construct the following Nemytskii mapping 
                           1, 1,

0 0ˆ : ( ) ( ) ( ) ( )p p
kB W L W L    →     

                                                         ˆ ( )( ) ( ( )). k kv B v x B v x=  
It follows from Lemma 2.3 in [17] that 1,0 ( ) ( )

ˆ ( ) 0pk W LB v v   − →‖ ‖  as k → . We 
now can test (2.10) by ˆ ( )kB u . Multiplying (2.10)  by ˆ ( )kB u , then integrating from   to 
T , we have  
     ˆ ˆ ˆ, ( ) ( ) ( ) ( )T T T

k k kB u dt gB u dxdt h u B u dxdt    −   = −      
                                ˆ ˆ( (0) ) ( ) ( ) ( )( )T

k kf u B u dxdt u B u dx    + − +    
                                2 2

2 2
( ) ( )

1 1ˆ ˆ ˆ( ) ( )( ) ( )( ) ( )( ) .2 2k k kL Lu T B u T dx B u T B u  − + − ‖ ‖ ‖ ‖  
Passing to the limit as k →  we have 

ˆ, lim ( ) ( )T T T
kku dt gudxdt h u B u dxdt    →−   = −      

 
2 2

2 2
( ) ( )

1 1( (0) ) ( ) ( ) ,2 2
T

L Lf u udxdt u u T    + − + −  ‖ ‖ ‖ ‖  
                                  

(2.13) 
 

where due to the nondecreasing of  1ˆ{ ( ) ( )}k kh u B u =  and ˆ ( )kB u u→  in 
2([0, ]; ( ))C T L  , it follows from the monotone convergence theorem that  

ˆlim ( ) ( ) ( ) .T T
kk h u B u dxdt h u udxdt  → =     

We deduce from (2.13) by passing to the limit as 0 →  that  
2 2

2 2
0 ( ) ( )

0
( ), ( ) .2 2T T

T L Lu u Tu dt gudxdt f u udxdt  
 −   = − + −   ‖ ‖ ‖ ‖  

(2.14) 

In view of (2.12) and (2.14), we have ( ) 2 1,
0( )0 div( | | ), 0, (0, ; ( )).p

T p p p p
La v v v u v dt v L T W −

 −    −      ‖ ‖  
Choosing v u = − , we deduce that 

2
( )0 div( ( ( ) ) | ( ) | ( )), 0, if 0, p

T p p
La u u u dt     −

 −  −  −  −    ‖ ‖  
2

( )0 div( ( ( ) ) | ( ) | ( )), 0, if 0,p
T p p

La u u u dt     −
 −  −  −  −    ‖ ‖  

for all 1,
0(0, ; ( ))p pL T W  . Letting 0 → , we get  ( ) 2 1,

0( )0 div( | | ), 0, (0, ; ( )).p
T p p p p

La u u u dt L T W  −
 −     =    ‖ ‖  
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This implies that ( )( )2
( )div | |p

p p
La u u u −

=   ‖ ‖  in 1,(0, ; ( ))q qL T W −  , 
which completes the proof of existence. 

ii) Uniqueness and continuous dependence on the initial data 
 Let ,u v   be two weak solutions of  (1.1) with initial data 0u , 0v  2 ( )L  , respectively. 

Then w u v= −  satisfies  ( ) ( )2 2
( ) ( )

0 0

div( | | ) div( | | )
( ) ( ) 0,

(0) .

p p
p p p p

t L Lw a u u u a v v v
f u f v

w u v

− −
  −    +    + − = = −

‖ ‖ ‖ ‖
 

(2.15) 

Multiplying the first equation in (2.15) by ˆ ( )kB w , then integrating from  to t , we obtain 
ˆ ˆ( ( ) ( )( )) ( ( )( ))t t

k k
d dw s B w s dxds w B w s dxdsds ds  −     

( ) ( )2 2
( ) ( ) ˆ| | | | ( ( )( ))( )p p

t p p p p
kL La u u u a v v v B w s dxds

− −
 +    −      ‖ ‖ ‖ ‖  
ˆ( ( ) ( )) ( )( ) 0.t

kf u f v B w s dxds + − =   

(2.16) 

Since 21ˆ ˆ( ) ( ( ))2k k
d dw B w B wdt dt= , we deduce from (2.1) and (1.5) by passing (2.16) 

to the limit as k →  and 0 →  that  
2 2 2

2 2 2
( ) ( ) ( )0( ) (0) 2 ( ) .t

L L Lw t w w s ds   + ‖ ‖ ‖ ‖ ‖ ‖  
An application of the Gronwall inequality of integral form leads to 

2 2
2 2 2

( ) ( )( ) (0) ,  for all (0, ).t
L Lw t w e t T  ‖ ‖ ‖ ‖  

This implies the desired result. 
3. Existence of global attractors 

Theorem 2.1 allows us to construct a continuous (nonlinear) semigroup 
2 2( ) : ( ) ( )S t L L →   associated to problem (1.1) as follows 

0( ) : ( ),S t u u t=  
where ( )u t  is the unique global weak solution of (1.1) with the initial datum 0u . 

3.1. Global attractor in 2 ( )L  .  
We first prove the following lemma. 
Lemma 3.1.  The semigroup 0{ ( )}tS t   has a bounded absorbing set in 2 ( )L   . 
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Proof. From the first equation in (1.1), taking the inner product with u , we have ( )2 1,0
2

( ) ( ) ( )
1 ( ) .2 p p

p p
L L W

d u a u u f u udx gudxdt     +  + = ‖ ‖ ‖ ‖ ‖ ‖  (3.1) 

In the case 2p = , it follows from (1.2) and (1.4) that  
2 2

2 2
1 1( ) ( )

1 ( ) | | .2 L L
d u m u c gudxdt    + −   +‖ ‖ ‖ ‖  

Since 1 0m −  , by the Young inequality, we obtain 
2 2 2

2 2 2
1 1( ) ( ) ( )1

1( ) 2 | | .L L L
d u m u c gdt m     + −   + −‖ ‖ ‖ ‖ ‖ ‖  

In the case 2p  , we deduce from (1.2) and (1.4) that  
2 2 2

2 2 2
1( ) ( ) ( ) ( )

1 1 1 ( )2 2 2p
p

L L L L
d u u m u u f u udx gudxdt      + +  − + ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖  

                                                                       2 2
2 2

1( ) ( )
1( 1) | | .2L Lu c g   + +  +‖ ‖ ‖ ‖  

Moreover, there exists a positive constant 5C  such that   
2

1 5| | ( 1) .pm s s C − + +   
Thus, in both cases we have 

2 2 2
2 2 2

5 1( ) ( ) ( )2( ) | | .L L L
d u u C c gdt   +  +  +‖ ‖ ‖ ‖ ‖ ‖  

Applying the Gronwall inequality, we get  
1 12 2

2 2
0 2( ) ( )( ) (1 ),R t R t

L Lu t u e R e− −
  + −‖ ‖ ‖ ‖  (3.2) 

where 2
2

1 1 2 1 ( )1

1, 2 | | LR m R c gm    = − =  + − ‖ ‖  if 2p =  and 1 1,R =  
 2

2
2 5 1 ( )2( ) | | LR C c g = +  + ‖ ‖  if 2p  . Therefore, 

2
2

0( )( ) Lu t  ‖ ‖  (3.3) 
for all 2

2
0 0 0 ( )( )Lt T T u  = ‖ ‖ , where 0 22R =  is independent of 0u . 

Lemma 3.2.   The semigroup 0{ ( )}tS t   has a bounded absorbing set in 1,
0 ( )pW   . 

Proof. Multiplying the first equation in (1.1) by pu−  and integrating by parts, we obtain 
( )1, 20

2
( ) ( )( )

1 ( ) | | .p p
p p p

p pL LW
d u a u u f u u dx g udxp dt    +   = −  −  ‖ ‖ ‖ ‖ ‖ ‖  

Using (1.2), (1.4) and the Cauchy inequality, we deduce that 
1, 1, 20 0

2
( )( ) ( ) .4p p

p p
LW W

d pu p u gdt m   +‖ ‖ ‖ ‖ ‖ ‖ (3.4) 
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On the other hand, integrating (3.1) from $t$ to $t+1$ and using (1.3) together with 
the Cauchy inequality, we have 
                    ( ) 1, 20

1 2
( ) ( )( )

1( ) ( ) ( 1)2p p
t p p

L LWt a u s u s ds u t+
  + + ‖ ‖ ‖ ‖ ‖ ‖  

                 2 2 2
1 2 2 2

1( ) ( ) ( )
1 1 1( ) ( ) | | .2 2 2

t
L L Lt u s ds u t c g +

  
  + + +  +    ‖ ‖ ‖ ‖ ‖ ‖  

In view of (3.2) and (1.2), we get the following estimate  
1, 20

1 2
0 1 ( )( )

1 1 1( ) ( ) | | ,2 2p
t p

LWt u s ds c gm  +


  + +  +   ‖ ‖ ‖ ‖  (3.5) 

for all $t \geq T_0$. As an application of the uniform Gronwall inequality, we deduce 
from (3.4) and (3.5) that 

1,0 1( )( ) ,p
p
Wu t  ‖ ‖  (3.6) 

for all 1 0 1t T T = + , where 2
2

1 0 1 ( )
2 1 2| |2 4

p
L

pc g em m
  
+ + = +  +  ‖ ‖ . 

The following theorem is a direct consequence of Lemma 3.2 and the compactness 
of the embedding 1, 2

0 ( ) ( )pW L   . 
Theorem 3.1. Under the assumptions (H1) - (H3), the semigroup 0{ ( )}tS t   

generated by problem (1.1) has a compact global attractor 2  in 2 ( )L  . 
3.2. Global attractor in 1,

0 ( )pW   
In this subsection we will prove the existence of a global attractor in 1,

0 ( )pW   under 
the following additional assumption 

(H1bis) a  is a continuously differentiable and nondecreasing function satisfying (H1). 
We first define the following subset   1, 20

2
( )( )( ) : .pR p LWu L u u R=   +  ‖ ‖ ‖ ‖  

We see that R  is the subset of the domain of p  acting on 2 ( )L  . Moreover, it is is 
precompact in 1,

0 ( )pW   (see [16, Remark 4.3]). We have the following important lemma. 
Lemma 3.3. Under the assumptions (H1bis), (H2) and (H3). For 0R   sufficiently 

large, R  is an absorbing set for the semigroup ( )S t  acting on 2 ( )L   (hence absorbing 
on 1,

0 ( )pW  ). 
Proof. It is enough to prove that the bounded absorbing set in Lemma 3.2 is absorbed 

into R  for some 0R  . Indeed, we denote tv u= . By differentiating the first equation in 
(1.1) in time, we obtain 
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          ( )( )2
( )div | |p

p p
t Lv a u u v−

−   ‖ ‖  
             ( )( )4

( )( 2)div | | ( )p
p p
Lp a u u u v u−

− −     ‖ ‖  
             ( )( )2 2

( )div | | ( ) | | ( ) 0.p
p p p
Lp a u u u v dx u u f u v− −

  −       + =‖ ‖  
Taking the inner product of the above equality with v  and using (1.4), one gets 

            ( )2
2 2 2

( ) ( )
1 | | | |2 p

p p
L Lv a u u v dx−

  +   ‖ ‖ ‖ ‖  
                             ( ) 4 2

( )( 2) | | ( )p
p p
Lp a u u u v dx−

 + −    ‖ ‖  
                             ( )( ) 2

22 2
( ) ( )| | ( ) .p

p p
L Lp a u u u v dx v−

 +     ‖ ‖ ‖ ‖   
By assumption (H1bis), it follows from the last inequality that 

2 2
2 2

( ) ( )2 .L L
d v vdt  ‖ ‖ ‖ ‖  (3.7) 

On the other hand, multiplying the first equation in \eqref{eq:1.1} by $u_t$, we get  ( )2 1,0
2

( ) ( ) ( )
1 ( ) 0.p p

p p
t t tL L W

du a u u f u u dx gu dxp dt    +  + − = ‖ ‖ ‖ ‖ ‖ ‖  
We can rewrite this equality as follows 

                   ( )2
2

( ) ( )
1 | | ( )[ ]p

p p
t L L

du a u u dx F u dx gudxdt p    +   + −  ‖ ‖ ‖ ‖  

                                                   ( )( ) ( ) ( )
1 .p p p

p p p
L L L

da u u up dt  =   ‖ ‖ ‖ ‖ ‖ ‖  
Setting 

10
sup | ( ) | .

s
L a s

 
=  

In view of (H1bis), (3.4) and (3.6), we deduce that  ( )2 1,0
2

( ) ( ) ( )
1 ( )[ ]p p

p p
t L L W

du a u u F u dx gudxdt p    +  + − ‖ ‖ ‖ ‖ ‖ ‖  

2
2

1 1 ( )
1 .4 LL gm  

  +  ‖ ‖  

(3.8) 
 

On the  other hand, integrating (3.1) from t  to 1t +  and using (3.3) leads to ( ) 1,0

1 0
( ) ( ) ( ) ,2[ ]p p

t p p
L Wt a u u f u udx gudx ds +

    + −   ‖ ‖ ‖ ‖  
for all 0t T . It follows from (1.5) that  

22 21 | (0) | ( ) ( ) , for all .2 2 2
fu F u f u u u u+− −   +   

Hence, we have  
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( ) 1,0

1
0( ) ( )

1 1( ) ,2[ ]p p
t p p

L Wt a u u F u dx gudx dsp +
   

+ + −   ‖ ‖ ‖ ‖  (3.9) 

for all 0t T . Using the uniform Gronwall inequality, it follows from (3.8) and (3.9) 
that  ( ) 1,0 2( ) ( )

1 ( ) ,p p
p p
L Wa u u F u dx gudxp     + −  ‖ ‖ ‖ ‖  (3.10) 

for all 2 1 1t T T = + , and 2
2

2 0 1 1 ( )
1 1

2 4 LL gm    
+  = + +  ‖ ‖ . Integrating 

(3.8) from t  to 1t +  and using (3.10), we infer that 
2 2

1 2 2
0 1 1 2( ) ( )

1( 1) 3 , for all .4
t

t L Lt u ds L g t Tm  +
 

  + + +    ‖ ‖ ‖ ‖  (3.11) 

Using the uniform Gronwall inequality again, it follows from (3.7) and (3.11) that 
2 2

2 2 2
0 1 1( ) ( )

1( ) ( 1) 3 ,4t L Lu t L g em   
   + + +    ‖ ‖ ‖ ‖                       (3.12) 

for all 3 2 1t T T = + . On the other hand, multiplying the first equation in (1.1) by 
pu− , using (1.4) and the Cauchy inequality, we obtain 

            ( ) 2
2

( ) ( ) ( ) | |p
p p

p t p pL La u u u udx f u u dx g udx      =  −  −   ‖ ‖ ‖ ‖  
                                     1, 2 2 20

2 2 2
( ) ( ) ( )( )

1 1 .2p
p

p tL L LW
mu u u gm m   +  + +‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖  

The following estimate is obtained from (1.2), (3.3), (3.6) and (3.12),  
2 2

2 2
1 0 32 2( ) ( )

2 2 2( ) , for all .p L Lu t g t Tm m m    + + ‖ ‖ ‖ ‖  
This combining with (3.6) implies the desired result. 
By the similar arguments of Corollary 4.5 in [16], we get the following result.  
Theorem 3.4. Under the assumptions (H1bis), (H2) and (H3), the semigroup 

0{ ( )}tS t   associated to problem (1.1) has a  compact global attractor  in 1,
0 ( )pW  . 
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