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Abstract: In this paper, we investigate the existence and uniqueness of periodic solution
to a class of nondensely defined differential equations with infinite delay of the form

% = (A+B®)ult)+ glt,u), t20

u, =¢eb
where A:D(A) = X — X is a nondensely defined linear operator on a Banach space
X which satisfies the Hille - Yosida condition, (B(t))t>0 is a family of bounded linear

operator, g is ¢ - Lipschitz function and B is appropriately phase space.

Keywords: Hille - Yosida condition, Periodic, Nondensely defined, Evolutionary
process, Banach function space.

1. Introduction

It is well known that a standard approach in deriving 7 -periodic solutions is to
define the Poincaré operator given by P(¢#)=u,(¢) which maps an initial function (or

value) 7-units along the unique solution u(¢) determined by the initial function (or
value) ¢ . For this one, conditions are given such that some fixed point theorem can be

applied to get a fixed point for the Poincaré operator, which gives rise to a periodic
solution. For differential equations without delay or with finite delay in general Banach
spaces, the existence of periodic solutions can be obtained by requiring that the resolvent
of A(.) be compact, so that the abstract version of the Ascoli theorem can be used to show
that the Poincaré operator is compact. Hence, the images of the Poincaré operator on
bounded sets are precompact, which makes it possible to derive the periodic solutions
from bounded solutions. However, this technique of showing the compactness of the
Poincaré operator does not apply to differential equations with infinite delay in general
Banach spaces. This means that other methods are needed to study the periodic solutions
for differential equations with infinite delay in general Banach spaces such as Granas's
degree theory, limiting equation technique or Kuratowski's measure of non-compactness
is used to show that the Poincaré operator is condensing under some conditions, so that
by Sadovskii's theorem, fixed points exist when a condensing operator maps a convex,
closed, and bounded set into itself.
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Periodic solution to nondensely defined differential equations with infinite delay

Recently, for the linear equation u= A(t)u+ f(t),t >0 the authors used a Cesaro

sum to prove the existence of a periodic solution through the existence of bounded
solution whose sup-norm can be controlled by the sup-norm of the input function f .

Then, we use the fixed point argument to prove the existence of periodic solutions for the
corresponding semi-linear problem. Especially, in [5], Huy and Dang considered the
existence and uniqueness of periodic solutions to partial functional differential equations
(PFDE) with infinite delay of the form
u=A{tu+g(tu), teR,
where for each te R, A(t) is a densely defined operator on a Banach space X
such that the family (A(t))tZO generates an evolution family (U (t’s))tzszo on X, and

g: R, xG, — X iscontinuous and ¢ -Lipschitz with

C,:={#:9€C((~0,0],X) and lime"

§—>—00

#(s)| =0 >0}

% is the history function defined by w,(6) = u(t + ) for 6 € (0, 0] . However,
as indicated in [1], we sometimes need to deal with non-densely defined operators. For
example, when we look at a one-dimensional heat equation with Dirichlet conditions on

82
[0.7] and consider ~ O%* in © [07}R
sup-norm, then the domain
DA=ueC® O;r,R:u0=uw=0=C On,R.

More precisely, in this paper we consider a nondensely defined nonautonomous
partial differential equation with infinite delay

dU _ A4 B@) ut)+g(tu), >0 0-1)

, in order to measure the solutions in the

dt
Uu, =B
where A DA X —X is a nondensely defined linear operator on a Banach
space X which satisfies the Hille - Yosida condition:
_|_
H, : there exist M, 21 and “° €R such that “0° "™ cp A and
n 0.2
HR & A SLH, forneN and &>, 02)
é_a)o
-1
where ? 4 is the resolvent set of A and R 4 = <74 . the function
: . . > . .
g:R, xB—X is bounded continuous; for every t=0Bt is a bounded linear

operator on X .
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It is worth noting that when operator A is not densely defined, the linear part

A+B t . .
does not generates a strongly continuous evolutionary process on the whole

space X , so the results obtained in [5] are not guaranteed. To overcome such difficulties,
we combine the methods and results in [7, 8] and appropriate choices of phase spaces to
prove the existence and uniqueness of the periodic solution to (1.1) without using the
uniform boundedness and smallness (in classical sense) of Lipschitz constants of the
nonlinear terms.

2. Preliminaries

2.1. Notations

In this paper R,R” and C stand for the real line, its positive half line, and the

complex plane. If X denotes a (complex) Banach space, then £X stands for the space
of all bounded linear operators in X-The spectrum of a linear operator T in a Banach

1= C, R"X
T,ande'(C\O-T b

. We denote by the space of

C, R,X

space is denoted by ¢

all bounded continuous functions from R" to a Banach space X and the

space of all bounded continuous functions from R to a Banach space X which endowed
with the supremum norm.

2.2. Mild solutions of inhomogeneous differential equations

Consider the following inhomogeneous differential equations

q B (0.3)
ax(t)_ A+B(t) x(t)+ f(t), fort>0

X 0 =X,
where AT D(A)CTX =X s 4 nondensely defined linear operator on a Banach
space X which satisfies the Hille - Yosida condition. It is well known that (see [2] and

Ty (1)

the references therein) the part A of A in Xo generates a Co -semigroup =0 on

X |T0(t)||§Me , Vt=0. Moreover, for LEP 4 the resolvent R 2.4,

e L

0 satisfying |

is the restriction of R 44 to Xo .On Xo we introduce the norm

where hp 4 is fixed. A different choice of hep A leads to an equivalent norm.
The completion X of X with respect to ||||,1 is called the extrapolation space of X,

Tfl(t) t>0

with respect to A. The extrapolated semigroup consists of the unique
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X

continuous extensions Tat of the operators To(t), tZO, to " -1. The semigroup

T, (t . . . . . .
(0 is strongly continuous and its generator Al s the unique continuous

extension of A to L Xo Xy . Moreover, X is continuously embedded in X and

RA4, is the unique continuous extension of R 44 to X for rep 4

X

. Finally,

A and A are the parts of ALin %o and X , respectively.

2 rfEL1 R", X

loc

Lemma 2.1 . Fo and 12520 e have
t
[T.t—0)f(0)do € X,
i) s :

(t,s)HfT,l(t—a)f o do

is continuous;

i)

JT2t=0)f@do| <M [ | f(0)do

for some constant M =1

i) II's
We now give the definition of a mild solution of (2.1) as follows.
+
Definition 2.2. Let %0 € X . A function X €CR™. Xo) is called a mild solution

to (2.1) if it satisfies the integral equation

t (1.2)
x(t)=T0(t—s)x(s)+fT_1 (t—o) B(o)x(o)+ f(o) do
forall t=5=0
Now, we consider the homogeneous linear equation
(1.2)
dx
a: A+B(t) x(t),t>0
X(0)=x, € X,
and assume that
H, e B(t)x is strongly measurable for every XE X, , and there exists a
y 1 + (.
function ‘el R such that [BOI < 0.

H, : The operator B() is T -periodic.
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Proposition 2.3 ([2]). Let H —H, be satisfied. Then, there exists a unique 7
-periodic strongly continuous evolutionary process Us (1,5) 2520 that satisfies
1. Uy (t,5) € L(X,) forall t=5=>0.
1 Uy (L) =1 ,forevery te R
o UatOUS ) =Ustr) oo t=s>r
3 U (t+T7,5+7)= U(t,s) foraIItZSZO;
The function (t.5,%) = Uy (8, 5)x is continuous in Lsx ;
5. There are positive constants R0 such that
|4 (8, 9)| < Re”®, forall t>s>0.
6. Furthermore,

(2.4)

U (6, 5)X =T, t —s)x+f:T,l(t —0)B(0) Uy (0,5)xd0, t>5>0,x€E X,

7. ie., L U (t,O)ins the unique solution of (2.3).
Remark 2.4. The representation of mild solution of (2.1) as in (2.2) is not
convenient to investigate the periodicity. To overcome this difficulty, we rewrite the mild

L - . . U (t,s
solution in terms of periodic strongly continuous evolutionary process 3(4:3) 2520 ag
follows.
1
Theorem 2.5 ([2]). Let Fel and % € XO. Then there is a unique mild

X()eC R", X,

solution of Equation (2.1) which satisfies the integral equation

X(0) = Uy (t,5)X(3) + lim [ U (L )ARO, A F(0)do fort>s>0.

t
A|imf Uy (t, AR, A) f (0)do € X,
Moreover, s exists uniformly for t=>5$ jn
compact sets in R,

2.3. Phase space for infinite delay evolution equations

In this paper, we will use an axiomatic definition of the phase space B introduced
by Hale and Kato in [3] and follow the terminology used in [4]. Thus, Biis a linear space

of functions mapping —o00 into X endowed with a norm ” ' ”B .
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We assume that B satisfies the following axioms:
(A). jf X —o0ota = Xa>0 0 ontinuous on 019 and % €B then for
every te oiota the following conditions hold:
1. X isin B.
[1] I < H %], ,
21 %], <K@E—o)sup |[x(s)|:o <s <t +M(t—0) ||xa||B

KM: 0;4+0c0 — 0;+00 , K()

Here H =0 jsq constant, is continuous and

M() is locally bounded, and HK(M() are independent of X(’).

(Al): For the function X() in (A) , the function U= X% is continuous from

0,0 +da into B..

(B) : The space B s complete.
We make the following assumption

H . .
4 . The exists positive constants Rk such that

RxO] <[], < resup[x()] (25)
teR*
Example 2.6. If B isa uniformly fading memory space, then (2.5) is fulfilled.
We finish this section by recall some notions on Banach function spaces and its
admissibility. We denote

M=M R* ::{f el R

t41
f(o)|d
Stl;lg)\[| (U)| o< oo}

endowed with the norm
t+1

Il = 1] do

Clearly, M is a Banach space and it is an admissible Banach function space in the
sense of [6, Definition 1.2]

For a given Banach space X, we define the space 9 of X -valued functions
related to M by

M= R X[[f()eM

endowed with the norm ”f”m::H”f(')”HM. Clearly, M is a Banach space.

Moreover, we consider the following subset of M consisting of 1-periodic functions
denoted by
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P= f eM|f isr-periodic
We put
B, = ¢ B:p(0)e X, .

XEX,&)G B weC RX

and for we define the following subsets,

B(X)= zeX,:jx—z21<€e7

B,(9):= ¢€Byti 6—pT<e

B(w)= weC (R, X)w, €B,and j o—wiy <7 .
Then, we give the following definition.

Definition 2.7, Let peM be a positive function. A function

F: 0,400 xB, 0 — X is said to belong to the class Lo.a , for some constants L&
if F satisfies:

a) ”F (t0)|| <Lo(1) forae teR™,

b) ”F(ta}ﬁ)_ F(t,Zz)||S€0(t)||Zl—Zz||B, for all X1 X2 €B, (0)’ aeinteR"

3. Main results

3.1. Periodic solution for the semilinear equation.

Now we are in situation to investigate the periodicity of solutions to the following
nondensely defined nonautonomous partial differential equation

%:(A+B(t))u(t)+g(t,ut), t>0, 3.1)
Uy =@ € B,.

We give the definition of a mild solution to Equation (3.1) as follows.
Definition 3.1. A function YR =X is a mild solution of equation (3.1), if

Uy =¢ BAand u() is continuous on [O;+OO) satisfying that

(3.2)
U(t):To(t)¢(0)+_[T_1(t—0')(B(O')M(O')+g(0',ua))d0' for 1>0.

We assume that

(Hs): g belongs to the class (L) for Na>0 gng 0<peM
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Assume that (Hl)_(H5) hold. Let de BA'Then, for ”¢||M small enough,

Equation (3.1) has a unique mild solution uekB, (O) given by

t 3.3
u(t) = Uz (t,0)¢(0) +!EUOIUB (t,0)AR(4,A)g(o,u )do, fort>0 43

U, = @.

Moreover, the limit

t
mj Uy (t,0)AR(A, AF (o,u, Ydo € X,
0

exists uniformly on compact sets on R, and mild solution depends continuously on
the initial data #-

Proof. Let t>0 and define the closed subset

B ’aZ:{WECb((—OO,tl],X)Z w, =@, w(0) € X, and sup ||w(t)||£a}

tl —oo<t<ty

| wl, = sup [weo)|
endowed with the norm 1 —o<tsy

(Fw)(t) = Uy (t, 0)w(0) + lim j; U, (t, 5)AR(L, A)g(o,w,)do.

welB .
Now, for SR e define

FweC, ((—=5t],X)

Then, and

AW <, (t,O)W(O)||+H lim [ 24, (t,0)AR(L Mg (o, Wg)do-H
<Re™ | w(0) P+R(L+xa)e’™ [t +1] oy, . ™

Thus, choosing * and ""''™ small enough such that —<*=h , We

Fw)eB . B
obtainthat( Web, a On the other hand, et S 1% then
. t
| (AN () - (AW T S"l'i‘l [{ Uy (t.0) AR M) (3(ov,) - 9(o, WU))do-H

<Re™ijv, -w 1y [t +1]Temy T

< Re™x[t, +1] PTMTV =Wy 7
Hence, it follows that,

-, <Rl vl v,
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Choosing 4 and ”¢||M small enough, we obtain that F is a contraction. Thus,

velBB —
there is a unique " such that FV=V. Remark that for

te[o]. v(t) G, ([O’tl]'xo) by construction. Particularly, v(t)e XO. Then,
proceeding inductively on [t“ ’t”+1], for €N and repeating the same work, with taking
W, =V,

°® ™, we obtain that there is a unique veB,(0) satisfying FV=V.

Now, we will prove that such solution V is the unique mild solution of (3.1) in B, (O) .In
fact, setting

Z,(t) = juB (t, 5)AR(A, A)g(o,v. )do

We have in view of (2.4), that

t t (3.4)
2,(t)= AR (% 4, j T,(t-0)g(ov, )do+ j T ,(t—0)B(0)z,(0)do.
As veE, (0) then, by (H5),
||g(a,vg) ||S (L+7ca)(p(a).
Since pe lﬂloc (R+) , then o g(O’, v()') < L:boc (R+) Putting
W(t) = .[T—l (t —a)g (0.v,)do.
We have by Lemma (2.1),
|2, —2,@)] < (4R (1 45) = VR (v, 4,) ) w(e)]|+ (3.5)

+M ie“’(t“’)ﬁ(a)uz# (0)-2,(0)|do

According to Lemma (2.1), w(t) is continuous into X . Consequently,
lim H(,uR(,u,AO)—VR(V,AO))w(t)H=O
U, V—>0

uniformly in compact intervals, for 1= 0,
From (1.2), we deduce that for € >0 and 1SR 4 compact interval, there is a
constant N depending on the length of | such that

Z, (t)-z, (t)” < 8+Nj;f(a)uzﬂ (a)—zv (O')HdO’
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for t20in I and %Y~ " large enough.
An application of Gronwall’s inequality gives

Nj((a)do‘

HZ# (t)-z, (t)HSse ,

z(t)=limz, (t)
for t20 in I and %Y~ W large enough. Thus, im0 exists uniformly

for £20 jn compact intervals. Since (Hl), it yields from the definition of Z; that
sup{z,(t): A>w,>0inl}<co,

Applying the Lebesgue convergence theorem to (3.4), we obtain

t t (3.6)
2(t)= [T, (t—0)B(0)z(0)do + [T ,(t—0)g(o,v,)do, ¢ 20

Hence, using (2.4) and (3.6), we have
V(1) = Uy (£,0)4(0) + lim [ 2y (t, 6) AR(2, A)g (0 ,v,)d o
= Uy (1,0)¢(0) + (1)
= Uy (t,0)¢(0) + [ T, (t—0)B(0)2(e)do + [ T ,(t-0)g(o.V, )do
=T, 040)+ [ T, (t-0)B(0) (Us (0,004(0) + 2(0))do+ [ T, (t o) (0., )do

=T0¢(0) + [, T, (t—0) (B(o)v(e) +g(0.V,))do, 20,

which means that V is a mild solution of (3.1).

Now, let U and V be two mild solutions of (3'1) in B“(O) _such that %o =4 and

Vo =2+ Then, for 0<t<T \ve have
U VO™ TOAO)-£0)+ [ T.-0) (Bo)ule) V(o) +9(on,)-g(o0,))doT
< OO -4O)] [ T.t-B(E)u(o)-woNdo] +|[,T.(-0)(olo.u,)-g(o.u,)do]

<[ O@AO)-4,0)| +[[T.t-0)B@)]i uo)-v(o)rdo+M [ e p(c)|u, -V, |, do

+

M (3.7)

<

e(uT
||¢1 ¢2|| tIHEE:
B o]

[T_,(t—o)B(o)|
h

P M e"’(t”)(p(a)J”ug —VU”B do.

Now, from (3.7) we obtain
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MewT
o -l <m( 1M ),

N IT - [T, (t-0)B(o)|
0 h

,Mew““’)(p(cr)j||ua -V, |, do, for 0<t<T.

Using the Gronwall’s inequality, we have

Hut(,¢1)—vt(.,¢z)HBSmax(l,%jemnq—@ns, for 0<t<T,

for some C >0 which implies the uniqueness of V and the continuity of the map
P (¢) uniformly for tE[O’T]. Proceeding inductively, we get the uniqueness of
V- and the continuity of the map gl (¢) uniformly for t €[0,+o0).

(HG): The Banach space Xo=Y" for a separable Banach space Y , and Y which

is a subspace of Y " is invariant under the operator Up (7,0) the dual of “e (.0).
Theorem 3.3 ([7]). Assume that (Hy)~(H:) and (Ho) hold and T €P- if

Equation (2.1) has a bounded mild solution u() on R, such that

= C|f], (3.8)

ul
” Cp (R, %o

for some constant C >0 thenithasa 7— periodic mild solution ac) satisfying

ol e < R(C+]+D)e | 1], 9
where [T] is the floor part of 7.
Further, if the evolution family (UB (t’s))tzszo satisfies
!im||Z/{B(t,0)x||=0 for xe X, suchthat 2 (t,0) isbounded on R, (3.10)

then the 7 -periodic mild solution is unique.

(H,) : The function 9(-4) is 7 -periodic, for each # € B-

Theorem 3.4. Assume that (H,)~(H,) hold. If for every feP

bounded mild solution U of (2.0) such that

, there exists a

y<Clfll,

ul
” Cy (R, . Xo

Uy (t,9))

and the evolution family ( 2520 satisfies
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!im||l/{B (t,0)u|=0 forall ueX, suchthat Ug(t 0)u isbounded on R*.

Then, if ”¢||M is sufficiently small, Equation (3.1) has a unique 7~ periodic

solution in B, (O) .
Proof. Firstly, we define closed subset
B::={weB,(0):w is r—periodic},

_ [wil, = sup[[w(t)]
endowed with the norm teR .

Then, for W5 1et U0) be defined by

u(t) = U (t,0)u(0) +lim j; Uy (t,0)AR(A, Ag(o, W, )do (3.11)

for u@eX we B!

. . o H
0. Note that for , since W is T~ periodic, use ( 4) we have

w, € B,

that "t and

i W <k TW() TC, (1, X)) S K.

If we put FO:=g(tw) , then

t+1 t+1

lats.w.)]|=sup [ fla(s,w.)lds <sup [ (Jo(s.0)]+]a(sw.)-g(s,0)]) ds

t+1

S(L+K0£)SU§) [ o) ds <(L+xa)|g],, -
S=>| t

s = periodic by hypothesis (H;) and the

It follows that | € P Moreover,
fact that W is 7—periodic. Now, an application of Theorem 3.3 guarantees that there
exists a unique 7~ periodic solution U for (3.11) satisfying

Jull, z.x,,< R(C +[z]+1)e” (L+ )|,

webB, we define

¥ (w)() :{

Now, for
u(t), forall t>0
a(t), forall t<0

where U is the unique 7~ periodic solution for (3.19) and ac) is the unique 7~

periodic extension of u() on R™. Since U s the 7~ periodic extension of U on R™
| P (W) T, () =TU Ty, )< RC+ 7]+ De”™ (L+xa) T o1y -
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Therefore, if ”(0”'\/' is small enough, then ¥ acts from 3 into itself.
Now, by (3.11) we have the following representation of ¥
t
U (1,0)u(0) +lim | U (t,0)AR(A, A ,w_)d fort>0,
() =) e GOVO+lim [ 1 (,0)2R(L Ag(o, w,)do
a(t) fort<0

where, as above, the function a(e) is the T~ periodic extension to interval (_OO’O)
of the periodic function

U(t) = Uy (t,0)u(0) + lim j U, (t, 5)AR(A, Ag(o,w, )do for t >0.

W, e B . Then, u= S”(wl)—?’(wz):%—u2

Furthermore, for ™ is the unique

T~ periodic solution to the equation
t
u(t) = Uy (t,0)u(0) + Lim .[Z/IB (t,0)AR(A, A) (g(cr, w,_)—g(o, WZU))dO', fort>0
0

u(t) =a@t) =0 (t)-a,@t), for t<O

u(t),t=0

Since , Is T~ periodic, and for t <0 the function u(t) isan 7~ periodic

extension of U to interval (_OO’O), we have that

i <I>(W1)—d>(W2)rcb(R,foUHEFU(t)r'":sugi u)
te >

t+1
<R(C +[r]+D)e”™ sup [ oo w,)-g(o,w,,)do
<R(C+[r]+1)e” PimT Wy =Woi 15 -

: L . H )

Hence, since Wi and Wz are - periodic functions, from ( 4) we obtain
i Wlo- _WZO' I_IBS KI_IW]_ _W2 Tlcb(R,;l) for a." t 2 0.

Then,

||SU(W1)—S”(W2)|| < R(C+[T]+1)e‘jfx

Cpy (R.X) |¢||M ”Wl _W2||Cb(R,X) :

Thus, if ”(0”'\/' is small enough, then ¥.B, > B is a contraction and an
application of the Banach fixed point theorem yields that there exists a unique bounded

A

periodic function U in B, such that T(u)_u . Consequently, from the definition of ¥,
it follows that U  is the solution of (3.1). This gives the result.
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