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Abstract: This paper is concerned with the stabilization problem via state-feedback control 

for a class of two-dimensional (2-D) singular Roesser systems. Based on a 2-D Lyapunov 

function scheme, and by utilizing zero-type free matrix equations, sufficient conditions in the 

form of linear matrix inequalities (LMIs) are first derived to guarantee the admissibility 

(causality and asymptotic stability) of the closed-loop systems. Then, a stabilizing state-

feedback controller (SFC) can be implemented using tractable LMIs conditions. 
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1. Introduction 

Two-dimensional (2-D) systems are widely used to describe dynamics of various 

practical models in control engineering. Typical applications of 2-D systems theory can 

be found in, for example, image processing, geographical data processing, electricity 

transmission, gas absorption, water stream heating or air drying [5-8].  Thus, the study of 

2-D systems, both in theory and application design, has attracted considerable attention 

from researchers during the past few decades. We refer the reader to [10, 12, 13] just for 

a few references. In particular, there have been a few results concerning stability and 

stabilization of 2-D systems. 

For example, in [11], the stability of 2-D Roesser systems with time-varying delays 

have been studied. In [12], the authors investigated the problem of H stabilization of 2-

D switch systems. The authors of [22] addressed the energy-to-peak stability of 2-D time-

delay Roesser systems with multiplicative stochastic noises. 

On the other hand, singular systems (also known as algebraic or descriptor 

systems) are widely used to describe dynamics of various practical phenomena such as 

electrical circuit networks, power systems, multibody mechanics, aerospace engineering, 

and chemical and physical processes [1-4]. In the past few decades, considerable effort 

from researchers has been devoted to the study of stability analysis and control of 

singular systems and many results have been reported in the literature. To mention a few, 

we refer the reader to [14, 15, 17] for the problem of stability analysis and [16, 18, 19] for 

some other control issues related to singular delayed systems. However, to the best of the 

author knowledge, the problem of stability for 2-D systems has not been fully investigated 

to date. This motivates the present study. 
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Notation: 
n m

denotes the set of n m  real matrices and ( , )diag A B  
0

0

A

B
 

for two matrices ,A B of appropriate dimensions. ( )
T

Sym A A A   for 
n mA  . A 

matrix 
n m

M


  is semi-positive definite, 0M   if 0,
T

x Mx   ;
n n

x M


  is  

positive definite, 0M  , if  0,
T

x Mx   , 0.
n n

x x


    

2. Preliminaries 

Consider a class of 2-D singular systems described by the following Roesser model 

( 1, ) ( , )
( , ), , ,

( , 1) ( , )

h h
x i j x i j

E A Bu i j i j
v v

x i j x i j

 

(1) 

where ( , )
nh hx i j and ( , )

nv vx i j n n nvh
 are the horizontal and the 

vertical state vectors, respectively; ( , )
m

u i j  is the control input. ,
n n

A

n m
B are given real matrices of appropriate dimensions and ,

h v
E diag E E

n n

 where ,
n n n nh vh h v vE E  and ( ) ,

h
rank E r n

h h

( )
v

rank E r nv v  with  r r r nvh
. 

 Initial condition of system (1) is specifed as 

(0, ) ( ), 0 , ( ,0) ( ), 0 ,
0 1 0 2

h h v v
x j x j j T x i x i i T  

 (2a) 

 

(0, ) 0, , ( ,0) 0, ,
1 2

h v
x j j T x i i T  

 

 (2b) 

where 1 2,T T
are positive integers. 

An SFC to stabilize system (1) will be designed in the form 

 

,
, .

,

h
x i j

u i j K
v

x i j

 

(3) 

Then, by incorporating the controller (3), the closed-loop system is obtained as 

( 1, ) ( , )
.

( , 1) ( , )

h h
x i j x i j

E A BK
v v

x i j x i j

 

(4) 

Let us introduce the following definitions. 
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Definition 1 ([10]). The pair of matrice ,E A .is said to be regular if the two 

parameter polynomial det ( , )E z s A is not identically zero, and is causal if 

deg det ( , )E z s A rank E , where , ,E z s diag zE sEvh . 

Definition 2 ([10]). The unforced system of (2) (i.e. 0u ) is said to be regular 

and causal if the pair ,E A  is regular and causal. 

Definition 3 ([10]). The closed-loop system (4) is said to be internally stable if for 

any initial condition (2) it holds that 

( , )
lim sup : 0

,

h
x i j

i j q
vq x i j

 

 

Definition 4 ([10]). The 2-D singular system (4) is said to be admissible if it is 

regular, causal and internally stable. 

Remak 1. Since ( )rank E r n  . There exist nonsingular matrices ,M N such that 

0ˆ

0 0

IrE MEN  

(5) 

Let  

 

ˆ ˆ
11 12ˆ
ˆ ˆ
21 22

A A
A M A BK N

A A
 

(6) 

Using the decompositions (5) and (6), we obtain the following auxiliary result. 

Lemma 1 ([10]). System (1) is regular and causal if the matrix ˆ
22A  in the 

decomposition given in (6) is nonsingular. 

Lemma 2. For any matrices ,1 2W W of appropriate dimensions and a symmetric 

positive definite matrix Q  the following inequality holds 

1
1 1 2 1 1 2 2 2

T T T T
W QW W W W W W Q W  

3. Main results 

In this section, we first analyze the regularity, causality and stability of closed-loop 

system (4). Then, an SFC ,    ,  u i j Kx i j design is addressed. 

Theorem 1. The closed-loop 2-D singular system (4) is admissible if there exist 

symmetric positive definite matrix ( , )
h v

P diag P P  and a matrix X  of appropriate 

dimension by which the following LMI holds 
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0
*

T T T T T
E PE X L A A LX A Pc c c

P
 

(7) 

where A A BKc  and 
T

L E  is the null space matrix 
T
E  that is, 

0
T
E L  and rank L n r . 

Proof. Firstly, we prove the closed-loop system (4) is regular and causal. Indeed, 

from (7), we have 

 

0
T T T T
E PE X L A A LXc c  

(8) 

By pre- and post-multiplying both sides of  (8) with 
T

N andN , we obtain 

 

1

1
0

T T T T
N E M M PM MEN

T T T T T T T
N X L M MA N N A M M LXNc c

 

(9) 

We decompose the following matrices 

ˆ ˆ
1 11 12ˆ ,

ˆ ˆ
21 22

ˆ ˆ ˆ ,11 12

ˆ
11ˆ
ˆ
21

P PT
P M PM

P P

X XN X X

LT
L M L

L

 

(10) 

It follows from rank L n r and 0
T
E L  that 

ˆ ˆ 0
T T T T T T
E L N E M M L E L , 

which leads to ˆ 011L . Therefore, we can parameterize the matrix L as 

0

21

T
L M

L
 

Combining (5), (6) and (10), from (9), we have 

11 12ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ 0.
ˆ ˆˆ ˆ ˆ ˆ*

12 21 22 22 21 12

E PE X L A A LX
X L A A L X

T T T T
T T T

 

    


 
 
 
 

 

(11) 

The LMI (11) also implies that 

12 21 22 22 21 12
ˆ ˆˆ ˆ ˆ ˆ 0,T T TX L A A L X 
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which ensures ˆ
22

A  is a nonsingular matrix. By Lemma 1, system (4) is regular and 

causal.  

In the following, we will show that the closed-loop system (4) is internally stable. 

For this, we construct a 2-D Lyapunov function in the form 

( , ) ( , ) ( , ) ( , ) ( , ).

( , )( , )

hT hT h h h vT vT v v v
V i j x i j E P E x i j x i j E P E x i j

vh V i jV i j

   (12) 

First, the differences of ( , )hV i j , ( , )vV i j  along trajectories of system (4) is given 

by 

( 1, ) ( , ) ( 1, ) ( 1, )

( , ) ( , ),

h h hT hT h h h

hT hT h h h

V i j V i j x i j E P E x i j

x i j E P E x i j

    


 

(13) 

( , 1) ( , ) ( , 1) ( , 1)

( , ) ( , ).

v v vT vT v v v

vT vT v v v

V i j V i j x i j E P E x i j

x i j E P E x i j

    


 (14) 

For the brevity, we denote the following augmented vectors 

( , ) ( 1, )
( , ) , ( , ) .

( , ) ( , 1)

h h

v v

x i j x i j
x i j x i j

x i j x i j


   
    

    Then, from (4), we have 

 

( 1, ) ( 1, ) ( , 1) ( , 1)

( , ) ( , )

( , ) ( , )

hT hT h h h vT vT v v v
x i j E P E x i j x i j E P E

j
T

x i j

x i E PEx i j

x i j A PA x i jc c

T

T T

    

  



 

 

(15) 

and 

 

 

( , ) ( , ) ( , ) ( , )

( , ) ( , ).

hT hT h h h vT v

T

T v v v

T

x i j E P E x i j x i j E P E x i j

x i j E PEx i j




 

(16) 

On the other hand, since ( )rank L n r   and 0TE L  , for any matrices X  of 

appropriate dimension, the following zero-equation holds 

2 ( , ) ( , ) 2 ( , ) ( ) ( , ) 0.T T T Tx i j X L Ex i j x i j X L A BK x i j     (17) 

From (15) to (17) we obtain 

( 1, ) ( , 1) ( , ) ( , )

( , ) ( , ).

( )

( )

h v h v

T T T T T T

c c c c

V i j V i j V i j V i j

x i j E PE X L A A LX A PA x i j

    

    
 

(18) 

By the Schur complement lemma supply a reference for this lemma, it follows 

from (7) that 
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0.T T T T T

c c c cE PE X L A A LX A PA    
 

Thus, there exists a positive number 0  such that 

2

0( 1, ) ( , 1) ( , ) ( , ) ( , ) , , .( )h v h vV i j V i j V i j V i j x i j i j        ¡ ¬¡ ¬  (19) 

For any positive integer q , let ( ) ( , )
( , ) ( )

E q V i j
i j q

 


denote the energy of the 

functional ( , )V i j  given in (12) stored along the diagonal line 

( ) {( , ) : , 0, 0}q i j i j q i j      . It can be deduced from (19) that 

       

   

   

( , ) ( , ) ( , )
, 1 , 1

(1, ) (2, ) ( 1,1)

( ,1) ( 1, 2) (0, 1)

(0, ) (1, ) ( ,1)

2
( ,0) ( 1,0) (0, ) ( , )

0 ,

( , ) ( , )
,

h v
V i j V i j V i j

i j q i j q

h h h
V q V q V q

v v v
V q V q V q

h h h
V q V q V q

v v v
V q V q V q x i j

i j q

h v
V i j V i j

i j q



  
   

     

      

    

       


 
    

2
( , )

0 ,
x i j

i j q
 



 

Therefore, 

2( 1) ( ) ( , ) .
0( , ) ( )

E q E q x i j
i j q

   


¡ ¬¡ ¬  (20) 

It can be verified from (20) that ( )E q  is a nonnegative decreasing sequence. 

This shows that there exists finite limit 
( ) lim ( )

q
E E q


 

. In addition to this 

2
( , ) ( ) ( 1) ( ) ( ) 0

0( , ) ( )
x i j E q E q E E

i j q
        


¡ ¬¡ ¬  

as q  , which shows that system (4) is internally stable. The proof is 

completed. 

The stabilization conditions of system (1) are presented in the following theorem. 

Theorem 2. The closed-loop system (4)} is admissible if there exist a symmetric 

positive definite matrix ( , )h vdiag , an invertible matrix   and any matrix  

of appropriate dimension, such that the following LMI holds 

  T

0,
*

T T T T TSym E L A L B A B    
 

  

 

(21) 

where  
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 L
T

E


  and {.}Sym  denotes the symmetric operator, that is, 

{ }Sym M M M T
T

   . A desired SFC gain is obtained as 1
.K


  

Proof. According to Theorem 1, we choose ( , )diag h vX X X  as an invertible 

matrix. By pre- and post-multiplying both sides of  (7) with 
1{ , }Tdiag X P 

 and its 

transpose, respectively, we obtain 

 1 1
( ) ( )

0.
1

*

T T T T T
X E PEX Sym L A BK X X A BK

P

   
   






 
 
 
 

 

(22) 

In addition, by utilizing the matrix inequality given in Lemma 2, we have 

1 1 1
.

T T T T
X E PEX X E EX P
    

     
(23) 

Now, we let 
1 1
,X P

 
  and 1

KX


 . Combining (23) to (22), we get 

the LMI condition (21). In addition, the controller gain can be obtained as 

1
.K


  

The proof is completed. 

4. Numerical example 

Example 1: 

Consider system (1) with the following parameters: 

1 0 0 0.14 0.5 1.12 0.01

0 1 0 , 1.2 0.13 0.01 , 0.01 .

0 0 0 0.02 0.15 0.15 0.02

E A B



  

   

     
     
     
          

 

It is easy to verify that 
0.2 0.48ˆ

22 0.0125 0.22
A

 

 
 
 

 is a nonsingular matrix, which 

proves that system (1) is regular and causal. 

According to Theorem 2 and by using the Matlab LMI Toolbox, we find the 

matrices follows 

49.2983 0 0 61.3825 3.3493 42.5257

0 128.4781 2.1011 , 0.3009 109.9202 223.4964 .

0 2.1011 88.6602 11.0355 45.0401 118.7774

P X

 

  

 

   
   
   
      

 

 165.4 484.9 1511.3W   

and the following controller gain can be obtained 

 17.7516 51.0423 115.1230 .K     

Which shows that the 2-D singular system is admissible. 
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5. Conclusion 

This paper has dealt with the stabilization problem via state-feedback control of 2-

D singular Roesser systems. Sufficient stability conditions in terms of LMIs have been 

derived based on a 2-D Lyapunov function scheme and utilizing zero-type free matrix 

equations. On the basis of the analysis result, a stabilizing SFC can be implemented using 

derived tractable LMIs conditions. 
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